
PHAEACO:

A COGNITIVE ARCHITECTURE

INSPIRED BY BONGARD’S PROBLEMS

Harry E. Foundalis

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

and the Cognitive Science Program

Indiana University

May 2006

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Dr. Douglas R. Hofstadter

(Principal Adviser)

Dr. Michael Gasser

Dr. Robert Goldstone

Dr. David Leake

Bloomington, Indiana
May 2006.

 ii

© 2006

Harry E. Foundalis

ALL RIGHTS RESERVED

 iii

For my brother, Dimos E. Foundalis,
who guided my thought since the beginning of my life

Στον αδερφό-µου, ∆ήµο Η. Φουνταλή,

που καθοδήγησε τη σκέψη-µου από τα πρώτα-µου βήµατα

 iv

ACKNOWLEDGMENTS

Looking as far into the past as my memory allows, I discern a few milestones that

led to the creation of this project. Each milestone is associated with someone who

played a vital role in my ability to realize the present work.

The first event happened when I was a child in Greece, in sixth grade.

According to my father, I was having trouble expressing my thoughts in a

patterned, standardized, and rather stilted way for a course called “Exposition of

Ideas” (akin to “Composition” in the U.S. education system). So he bought me a

book that contained dozens of examples of essays, from which I was supposed to

learn how to write. I do not believe I learned anything from that book; with only

one exception, all its essays were utterly boring. But the one exception was about

the brain and our mental world, and I found it absolutely captivating. I read it

from beginning to end several times, and became extremely eager to learn more

about the ways our “self ” is created out of the ceaseless functioning of billions of

neurons. It was the first time I stumbled upon the idea that all our “subjective

experiences”, all that constitutes our rich, ethereal, and private mental world,

might be the outcome of an entirely non-mental, materialistic layer, made of

biological components and amenable to scientific scrutiny. It was also the first

time I remember myself thinking: “When I grow up, I would like to have a job

that will let me learn more about how the mind works.” The more succinct

version of this thought, “I want to become a cognitive scientist”, couldn’t have

occurred to me back then, since the term “cognitive science” had not yet been

coined.

 v

The second milestone is not exactly an “event”, since it spreads over a period

of 15 to 20 years. I associate it with my brother, who, being ten years older, was

able to guide my interests to match his own. Besides inspiring my broad interests

in scientific matters, and reinforcing my conviction that the world is utterly

explicable in terms of what our senses allow us to perceive, my brother, quite

unconsciously, instilled in me the ability to construct algorithms. With numerous

construction-projects he taught me to be like him: careful, systematic, aware of

the impact of every fine detail, persistent, and undaunted by failure. Later, in my

college years, the notion of an algorithm became explicit for both of us. I ended

up possessing a programmable Texas Instruments scientific calculator, and we

both spent countless hours programming the little hand-held device in its arcane,

but so well-designed machine language. This continued when, in 1987, we both

acquired our first “real computer”, an IBM PC/XT, capable of being programmed

in the then-fashionable language Turbo Pascal. By that time I realized I had a

certain knack for designing algorithms, but it was only later that I understood and

appreciated the abstract and very fundamental role my brother played in molding

my character.

After earning a Master’s degree in computer science, in 1993, and working for

four years for a software development company, I finally realized my interests

were not in commercial enterprises, but in science. I remember trying to find, for

hours on end, the solution to a problem: given a collection of planar points that

form approximately a curve, how do we find the curve that approximates them?

What if the points form not just one, but several curves? How does our eye solve

this problem? Little did I know that this problem had been solved long time ago,

but my desire to find an algorithm was intense. My wife played a pivotal role in

letting me understand that I would benefit from continuing my studies for the

 vi

Ph.D. degree. So it was decided that I would apply for a doctoral program in

computer science in the U.S.A. Two years later, in September 1995, I entered

Indiana University with a double major in computer science and cognitive

science.

Within two years I had figured out a way to represent conceptual relations. I

drew some rather detailed figures of the abstract ways in which concepts should

be connected, but had not implemented these ideas in any way. At the same time,

coincidentally, I was reading Douglas Hofstadter’s Gödel, Escher, Bach: an

Eternal Golden Braid. Upon reaching page 652, to my utter astonishment, I saw

my own figures printed! Well, they weren’t exactly “my figures”, but it was such

a close match that I thought something mysterious was happening. But there was

no mystery: my thoughts had simply converged roughly to the same

representational scheme that Hofstadter had envisaged more than 20 years before.

This made me very curious about Hofstadter’s work. By a second fortunate

coincidence, Hofstadter was physically in Bloomington, a member of the faculty

in computer science, cognitive science, and various other departments at Indiana

University. I took a class with him, and in less than a year I was a member of his

research team, and he became my advisor.

Hofstadter’s work, philosophy, and approach in cognitive science made a very

deep impression on me, and marked the direction of my subsequent research.

Phaeaco, described in this thesis, bears the unmistakable signature of a

“Hofstadterian” architecture. In addition, I had the opportunity to use the facilities

of his research lab (the Center for Research on Concepts and Cognition, or

CRCC) for eight consecutive years, with few obligations beyond my own work.

This was a very generous arrangement that few graduate students have the

opportunity to enjoy. I am forever grateful to my advisor for this.

 vii

Albeit for different reasons, each of the three other members of my Thesis

Committee deserve a warm “thank you”. Michael Gasser, for letting me interact

and exchange ideas with the students of his own research group (GLM), attending

their weekly meetings for over five years, and giving me numerous pieces of

advice on several occasions; Robert Goldstone for kindly lending me the facilities

of his laboratory in the psychology building, without which my experiment on

human subjects would have never been completed; and David Leake, for giving

me early guidance, including a term project on visual perception in one of his

classes in computer science, which became the initial stepping stone on which

Phaeaco was eventually based. An initial stub of a very small but essential routine

in Phaeaco (called “Process B” in chapter 10), was written by my collaborator in

that project, Etsuko Mizukami.

Some of my friends played an indispensable role in the development of this

work. My colleague, Maricarmen Martínez, deserves a special mention. It was

often after long discussions with her that many of my ideas about cognition

crystallized, and various aspects of the project took shape. Maricarmen was my

sounding board, and continues to offer essential moral support. Alexandre

Linhares was also a source of great encouragement, and often of undeserved but

always appreciated compliments. John Rehling, the designer of Letter Spirit (one

of Hofstadter’s projects), provided both his spirit in several lively discussions

years ago, and his “letter” (his dissertation) — a solid guide on which I based the

present one. Yoshiko Osawa was my Japanese language helper for a linguistics

project that began in the present work, but has not yet been completed. I should

also mention that I used Yoshiko’s low-quality printer to scan the Bongard

problems from Bongard’s book, and resisted all temptations ever since to re-scan

them at a better resolution, reasoning that since our human eye can deal with them

 viii

at this poor quality, my program should be able to do so as well. Finally, Ralf

Juengling, a friend and collaborator for one year, ported Phaeaco’s C++ code to

Linux, and gave me many useful suggestions for improvements. He was devoted

to the project, and worked meticulously for months on end, completely undaunted

by the complexity of the task. His advisor, Melanie Mitchell (the author of

Copycat), offered me the opportunity to present Phaeaco at the Oregon Graduate

Institute in Portland, Oregon, in an invited lecture.

Of the other people who contributed in various ways to this project I cannot

neglect mentioning my good friends, Nathan Basik, and his wife, Irma Verónica

Alarcón, who helped me with proofreading and linguistics, respectively (let alone

various occasions for discussion over the dinner table at their home); and the

fellow researchers at CRCC: Jim Marshall, Hamid Ekbia, and the “younger

generation” folks: David Landy, Francisco Lara-Dammer, Abhijit Mahabal, Jay

Muller, Eric Nichols, Michael Roberts, and Damien Sullivan.

Finally, no part of my work would have been completed smoothly without

Helga Keller, the heart and soul of CRCC. Our dear research center could not

function properly — if it could function at all — if Helga were not there to help

all of us with our essential administrative prerequisites.

Harry Foundalis,

Bloomington, May 2006.

 ix

ABSTRACT

Phaeaco is a cognitive architecture for visual pattern recognition that starts at the

ground level of receiving pixels as input, and works its way through creating

abstract representations of geometric figures formed by those pixels. Phaeaco can

tell how similar such figures are by using a psychologically plausible metric to

compute a difference value among representations, and use that value to group

figures together, if possible. Groups of figures are represented by statistical

attributes (average, standard deviation, and other statistics), and serve as the basis

for a formed and thereafter learned concept (e.g., triangle), stored in long-term

memory. Phaeaco focuses on the Bongard problems, a set of puzzles in visual

categorization, and applies its cognitive principles in its efforts to solve them,

faring nearly as well as humans in the puzzles it manages to solve.

 x

TABLE OF CONTENTS

ACKNOWLEDGMENTS.. v

ABSTRACT.. x

PART I: BONGARD’S WORLD .. 1

1 PROLOGUE WITH A BOOK’S EPILOGUE... 3
1.1 INTRODUCTION .. 3
1.2 A VIRTUAL TOUR IN BONGARD’S WORLD... 5

1.2.1 Solutions with difference in a feature value.................................... 6
1.2.2 Existence ... 8
1.2.3 Structural and relational differences .. 10
1.2.4 Relation within a single box.. 12
1.2.5 Solutions and aesthetics.. 13

2 WHY ARE BP’S COGNITIVELY INTERESTING?............................. 19
2.1 QUESTIONING MICRODOMAINS .. 19
2.2 BP’S AS INDICATORS OF COGNITION .. 21

2.2.1 Pattern formation and abstraction.. 21
2.2.2 Pattern-matching, recognition, and analogy-making................... 25
2.2.3 Clustering and Categorization.. 28
2.2.4 Memory and learning.. 30
2.2.5 Design and creativity .. 32
2.2.6 Language and communication.. 33

2.3 ON THE FUTILE QUEST FOR A PRECISE DELINEATION OF BP’S................. 34
2.3.1 Beyond Bongard’s world .. 34
2.3.2 Defining the domain.. 42

3 UNIVERSALITY AND OBJECTIVITY OF BP’S 45
3.1 ARE BP’S CROSS-CULTURAL? .. 45

3.1.1 Geometry as perceived by peasants and indigenous people......... 46
3.2 OBJECTIVITY OF THE DIFFICULTY OF VARIOUS BP’S 49

3.2.1 An experiment with American college students 50
3.3 SUMMARY.. 57

 xi

4 AUTOMATION OF BP-SOLVING.. 59
4.1 RF4 AND THE PROBLEM OF INPUT REPRESENTATION.............................. 59
4.2 MAKSIMOV’S COMBINATORIAL APPROACH .. 65
4.3 HOW IS PHAEACO’S APPROACH DIFFERENT? .. 70
4.4 WHAT SHOULD BE THE GOAL OF AUTOMATION? 74

4.4.1 Number of BP’s solved vs. degree of automation 74
4.4.2 Agreement with data vs. interest in cognitive science 76

PART II: PHAEACO ... 79

5 PHAEACO IN ACTION .. 81
5.1 WHAT PHAEACO CAN DO ... 81

5.1.1 Feature value distinction .. 81
5.1.2 Existence ... 87
5.1.3 Imaginary percepts ... 89
5.1.4 Equality in a single box... 92
5.1.5 Reading the small print... 97

5.2 PHAEACO’S MENTOR ... 102
5.3 SUMMARY.. 106

6 FOUNDATIONAL CONCEPTS... 107
6.1 THEORIES OF CONCEPTS... 107

6.1.1 The classical theory of concepts ... 107
6.1.2 The prototype theory of concepts.. 111
6.1.3 The exemplar theory of concepts .. 115
6.1.4 The Generalized Context Model ... 118
6.1.5 Controversy over the correctness of the two theories................. 120

6.2 THE FARG PRINCIPLES OF CONCEPTUAL REPRESENTATION................. 123
6.2.1 Copycat and its Slipnet ... 127
6.2.2 The Workspace.. 130
6.2.3 Coderack, codelets, and temperature ... 131

7 WORKSPACE REPRESENTATIONS.. 135
7.1 FORMATION OF WORKSPACE REPRESENTATIONS 135
7.2 ACTIVATION OF NODES AND MONITORING ACTIVITY............................ 156
7.3 NUMEROSITY ... 163

7.3.1 Background... 164
7.3.2 The accumulator metaphor ... 169

7.4 OTHER VISUAL PRIMITIVES .. 173
7.4.1 Dots, points, abstract percepts, and conceptual hierarchies...... 173

 xii

7.4.2 Vertices, Touches, Crosses, and K-points................................... 176
7.4.3 Angles.. 179
7.4.4 Line strings.. 180
7.4.5 Curves ... 184
7.4.6 Concavities and missing area ... 187
7.4.7 Interiors... 188
7.4.8 Elongatedness ... 194
7.4.9 Endoskeleton and exoskeleton .. 196
7.4.10 Equality, for all ... 198
7.4.11 Necker views ... 205

7.5 SOME GENERAL REMARKS ON VISUAL PRIMITIVES 207
7.6 SUMMARY.. 210

8 VISUAL PATTERNS ... 211
8.1 MOTIVATION.. 211
8.2 PATTERN-MATCHING ... 213

8.2.1 Matching feature nodes... 214
8.2.2 Matching numerosity nodes .. 216
8.2.3 Combining feature differences; contextual effects...................... 218
8.2.4 Matching entire structures.. 221
8.2.5 Using difference to compute similarity 225

8.3 GROUP AND PATTERN FORMATION... 226
8.3.1 Background from computer science.. 227
8.3.2 Phaeaco’s group-formation algorithm 228
8.3.3 Pattern updating ... 232
8.3.4 Comparison of algorithms .. 236

8.4 PATTERN MATCHING AS THE CORE OF ANALOGY MAKING.................... 239

9 LONG-TERM MEMORY AND LEARNING 247
9.1 MOTIVATION: IS LTM REALLY NECESSARY?....................................... 247
9.2 FROM VISUAL PATTERNS TO CONCEPTS.. 250

9.2.1 A slight departure from the Slipnet concept of concept.............. 251
9.3 PROPERTIES OF LTM NODES AND CONNECTIONS 254

9.3.1 Long-term learning of associations .. 254
9.3.2 Links as associations and as relations.. 259

9.4 HOW TO REMEMBER, AND HOW TO FORGET ... 261
9.4.1 Indexical nodes ... 261
9.4.2 Forgetting concepts .. 264

9.4.2.1 Justification of forgetfulness... 264

 xiii

9.4.2.2 Forgetting in Phaeaco ... 268
9.5 CONCLUSION: WHAT DOES “LEARNING” MEAN? 269

10 IMAGE PROCESSING ... 273
10.1 THE PREPROCESSOR ... 274

10.1.1 Determining the background color... 277
10.2 THE PIPELINED PROCESS MODEL .. 278
10.3 THE RETINAL PROCESSES ... 280

10.3.1 Process A .. 280
10.3.2 Process B .. 283
10.3.3 Process C .. 286
10.3.4 Process D.. 287
10.3.5 Process E .. 291
10.3.6 Process F .. 292
10.3.7 Process M.. 293
10.3.8 Process G.. 294
10.3.9 Process H.. 297
10.3.10 Process i.. 298
10.3.11 Process K .. 298
10.3.12 Process O.. 298
10.3.13 Process P .. 300
10.3.14 Process R .. 300
10.3.15 Process Q.. 300
10.3.16 Process S... 301
10.3.17 Process Z... 303
10.3.18 Other image-processing functions .. 304

11 PUTTING THE PIECES TOGETHER.. 305
11.1 HOW BP’S ARE SOLVED ... 305

11.1.1 First mechanism: hardwired responses 306
11.1.2 Second mechanism: the holistic view.. 311
11.1.3 Third mechanism: the analytic view ... 316

11.2 WHAT PHAEACO CAN’T DO.. 321
11.2.1 Conjunction of percepts .. 322
11.2.2 Screening out “noise”... 323
11.2.3 Applying a suspected solution on all boxes uniformly................ 324
11.2.4 Pluralitas non est ponenda sine necessitate 327
11.2.5 Meta-descriptions ... 329
11.2.6 Figure–ground distinction .. 330

 xiv

11.3 SUMMARY.. 332

12 BEYOND VISION .. 333
12.1 ON THE PRIMACY OF VISION... 333
12.2 DOES PHAEACO “UNDERSTAND” ANYTHING? 338

12.2.1 In defense of half of Searle’s Chinese Room 338
12.2.2 But the other half of the room is empty....................................... 340
12.2.3 On the inadequacy of classical logic in cognition 342

12.3 ON THE INNER “I” AND RELATED ISSUES.. 345
12.3.1 What it would take for Phaeaco to possess an “I”..................... 346
12.3.2 Can Phaeaco have subjective experiences (“qualia”)? 347

12.4 SUMMARY.. 351
12.5 A RECAPITULATION OF IDEAS INTRODUCED IN THIS THESIS.................. 351

APPENDIX A: BONGARD PROBLEMS.. 353

APPENDIX B: CURVE APPROXIMATION.. 421

APPENDIX C: ORIGIN OF PHAEACO’S NAME 427

REFERENCES.. 431

 xv

LIST OF FIGURES

Figure 1.1: BP #6; one of the simplest Bongard problems, contrasting two patterns

... 4
Figure 1.2: BP #3, exemplifying a feature with discrete values 6
Figure 1.3: BP #2, exemplifying a feature with continuous values 7
Figure 1.4: BP #31, a solution based on numerosity (of curves)............................ 8
Figure 1.5: BP #1, existence of objects (on the right side) 9
Figure 1.6: BP #40, existence of imaginary straight lines 9
Figure 1.7: BP #69, exemplifying a structural difference..................................... 10
Figure 1.8: BP #45, exemplifying a relational difference..................................... 11
Figure 1.9: BP #56, with sameness within each single box.................................. 12
Figure 1.10: BP #108, types of “flowers”... 13
Figure 1.11: BP #121, with a code-breaking type of rule..................................... 14
Figure 1.12: BP #70, one vs. two levels of description .. 15
Figure 1.13: BP #71, two vs. one level of description.. 15
Figure 1.14: BP #112, a paragon of simplicity ... 16
Figure 1.15: BP #180, another seemingly simple but hard problem 17
Figure 2.1: One of Evans’s geometric analogy problems: A is to B as C is to ?

(answer: 3) .. 20
Figure 2.2: Instances of visual input ... 21
Figure 2.3: One way to depict a summary representation of the input in Figure 2.2

... 22
Figure 2.4: A cursory look allows perception of a single pattern only in BP #53 23
Figure 2.5: The different patterns in BP #183 are readily perceptible.................. 24
Figure 2.6: Input instances that progressively deviate from a given instance (top)

... 25
Figure 2.7: Analogy making in BP #97 (or is it pattern formation and matching?)

... 26
Figure 2.8: Analogy-making seems to be at work on the left and right sides in BP

#170... 27
Figure 2.9: BP #166, an example of involuntary clustering 28
Figure 2.10: What constitutes a cluster in BP #90 is not immediately obvious ... 29
Figure 2.11: Learning and an LTM seems to be necessary in BP #100 31
Figure 2.12: BP #196, with “shades of gray” (“colors”?)..................................... 35

 xvi

Figure 2.13: Objects with three dimensions in BP #63 .. 36
Figure 2.14: Direct perception of third dimension in BP #195............................. 37
Figure 2.15: Motion in BP #198 ... 38
Figure 2.16: Navigation in BP #176 ... 38
Figure 2.17: A different navigational problem in BP #175 39
Figure 2.18: Motion combined with gravity in BP #199 40
Figure 2.19: BP #200 is a Bongard problem about Bongard problems 41
Figure 3.1: Geometrical figures presented to Luria’s subjects 46
Figure 3.2: Sample problem of type “find the odd-man-out” used by Dehaene et al

... 49
Figure 3.3: The first BP in the familiarization session ... 52
Figure 3.4: A familiarization-BP for cautioning the subject on the nature of rules

... 53
Figure 3.5: Exact sequence of BP’s tested (read by rows; first “real” BP is #2,

then #6, etc.).. 55
Figure 3.6: BP #94, a surprisingly fast-solved problem 56
Figure 4.1: A single triangle, out of context ... 60
Figure 4.2: Possible representation of a triangle in RF4....................................... 60
Figure 4.3: The triangle of Figure 4.1 in the context of BP #85........................... 61
Figure 4.4: BP #29, where shape is irrelevant .. 62
Figure 4.5: BP #20, where shape is important .. 63
Figure 4.6: MP #13, three vs. two closed regions (four boxes per side) 65
Figure 4.7: MP #11, a training set: “three (upper left) vs. five” (upper right)”.... 66
Figure 4.8: Tree of descendant images, applying operators contour isolation (C),

contour filling (F), convex hull filling (T), and separation by
connectedness (S).. 67

Figure 4.9: Expectation of convergence between biological and “programmed”
cognition ... 72

Figure 4.10: Graph of number of solved BP’s vs. degree of automation 75
Figure 4.11: Graph of agreement with human behavior vs. cognitive interest..... 77
Figure 5.1: Phaeaco’s appearance after having solved BP #3 82
Figure 5.2: Phaeaco after having solved BP #2 .. 84
Figure 5.3: BP #23 as solved by Phaeaco... 85
Figure 5.4: Difference in numerosity of lines in BP #85...................................... 86
Figure 5.5: BP #1, the simplest problem of existence .. 87
Figure 5.6: Existence of curves on the right side of BP #5................................... 88
Figure 5.7: BP #4, “convex vs. concave” ... 89
Figure 5.8: BP #4, as solved by Phaeaco .. 90
Figure 5.9: BP #15, as solved by Phaeaco.. 91

 xvii

Figure 5.10: BP #56, as solved by Phaeaco .. 92
Figure 5.11: BP #39, as solved by Phaeaco .. 94
Figure 5.12: BP #22, as solved by Phaeaco .. 95
Figure 5.13: Left of arrow: two small objects. Right of arrow: their actual pixels

magnified ... 97
Figure 5.14: Result of algorithmic magnification (b) and actual pixels (c).......... 98
Figure 5.15: BP #21, as is usually solved by Phaeaco.. 99
Figure 5.16: BP #21, as occasionally solved by Phaeaco 101
Figure 5.17: The Mentor section of Phaeaco’s interface 103
Figure 5.18: A figure drawn and a phrase typed in Mentor’s boxes................... 104
Figure 5.19: Phaeaco’s markers of visual processing are superimposed over the

drawing .. 105
Figure 6.1: Abstraction of the prototype (left) and exemplar (right) representations

... 121
Figure 6.2: Abstraction of Phaeaco’s conceptual representation........................ 123
Figure 6.3: A small portion of a concept network, from GEB (Hofstadter, 1979, p.

652) ... 124
Figure 6.4: An even smaller portion of the network of Figure 6.3 125
Figure 6.5: A bi-directional link denoting a symmetric relation 126
Figure 6.6: BP #24, one of many where a slippage facilitates its solution 127
Figure 6.7: Illustration of figurative “shrinking” of a link due to activation of its

“label” ... 129
Figure 7.1: A simple input figure (from BP #30) ... 136
Figure 7.2: An incipient representation: “a line segment in a box”.................... 138
Figure 7.3: A box with an object that contains two line segments 139
Figure 7.4: The representation as it looks after the work of some codelets........ 142
Figure 7.5: Further enrichment of representation: texture, vertex, and updated λ-

numerosity... 144
Figure 7.6: Line segments or filled objects?... 145
Figure 7.7: A new line slope, object numerosity, and updated line length......... 147
Figure 7.8: Convex hull added.. 148
Figure 7.9: Convex hull of a set of points... 149
Figure 7.10: The figure in box II-C of BP #12 is not elongated only by perceiving

its convex hull .. 150
Figure 7.11: Area of convex hull, and barycenter of object 151
Figure 7.12: BP #8, solved by noticing the placement of barycenters within the

boxes .. 152
Figure 7.13: BP #84, where objects are lined up forming larger shapes 153
Figure 7.14: Barycenter of object (A), and barycenter of convex hull (B)......... 153

 xviii

Figure 7.15: Final representation, with coordinates of barycenter 154
Figure 7.16: Figure 7.5, repeated, with activations on some nodes illustrated... 157
Figure 7.17: A sigmoid that shows how the activation value (on the y-axis) can

change in time .. 159
Figure 7.18: Three alternative possibilities for a monotonically increasing

function f .. 160
Figure 7.19: Separating the sigmoid into three constituent parts........................ 162
Figure 7.20: How many dots are present, without counting? 163
Figure 7.21: Rat numerosity performance (adapted from Dehaene, 1997) 166
Figure 7.22: Representation of a single dot in a box .. 174
Figure 7.23: Three ways in which two lines can meet: a vertex, a touch-point, and

a cross... 176
Figure 7.24: Representation of V, T, and X in Phaeaco 176
Figure 7.25: More complex intersections: K-like (a), star-like (b), and their

representation (c) ... 177
Figure 7.26: BP #87, necessitating a re-parsing of the intersected lines 178
Figure 7.27: Types of angles produced by intersections of lines........................ 180
Figure 7.28: Representation of the two angles of a cross, registered (i.e., linked)

twice... 180
Figure 7.29: A “line string” (or possibly several of them) 181
Figure 7.30: Part of the representation of a line string 181
Figure 7.31: A futile exercise for computers: how many line strings are there in

this “crystal”?... 183
Figure 7.32: Construction of “center of curvature” in two “bays” of a curve

(retinal level).. 185
Figure 7.33: Representation of a curve with two bays and their centers of

curvature .. 186
Figure 7.34: Concavities (a), objects inside outlined object (b), and holes in filled

object (c) .. 187
Figure 7.35: Representation of “missing quantity” of an object......................... 188
Figure 7.36: Gradations in concept “interior”... 189
Figure 7.37: Measurement of the openness of an interior region 189
Figure 7.38: Representation of the “openness of interior” of an object with two

interiors .. 190
Figure 7.39: The relation “inside” is not always clear-cut.................................. 190
Figure 7.40: Partial representation of relation “object 2 is inside object 1” 191
Figure 7.41: Still partial representation of relation “object 2 is inside object 1” 192
Figure 7.42: Full representation of relations among objects 1, 2 and 3.............. 193
Figure 7.43: What is the value of elongatedness of this shape? 194

 xix

Figure 7.44: Representation of elongatedness in the special case of a scalar value
.. 195

Figure 7.45: The endoskeleton (internal line) and exoskeleton (outline) of an
irregular object ... 196

Figure 7.46: A complex figure, and its superimposed endoskeleton as computed
by Phaeaco ... 197

Figure 7.47: Simplified representation of endoskeleton 197
Figure 7.48: One of the boxes of BP #56.. 198
Figure 7.49: Implicit representation of equality (four objects with the same

texture) ... 199
Figure 7.50: Explicit representation of equality of texture value 200
Figure 7.51: Representation of “all objects have outlined texture” 202
Figure 7.52: Representation of “all objects have similar texture” 204
Figure 7.53: Necker cube (a), and two possible ways to perceive it in three

dimensions (b).. 205
Figure 7.54: A simple ambiguous drawing: line segment or filled rectangle? ... 206
Figure 7.55: A Necker view representation .. 206
Figure 8.1: Three examples of “lumping”: by location (a), by feature value (b),

and by shape (c) .. 211
Figure 8.2: Two line segments with their features considered for matching...... 219
Figure 8.3: Objects with a variety of features... 221
Figure 8.4: Two structures to be considered “recursively” for mapping............ 224
Figure 8.5: One of the boxes of BP #166, exemplifying group formation 226
Figure 8.6: Phaeaco’s basic group-formation algorithm..................................... 229
Figure 8.7: Another box from BP #166, with one group (pattern) and two isolated

exemplars .. 230
Figure 8.8: Algorithm testing for similarity of exemplar to patterns.................. 231
Figure 8.9: The letter “A” in two different fonts .. 232
Figure 8.10: A larger sample of input exemplars of “A” ’s in various fonts (Figure

2.2, repeated).. 234
Figure 8.11: Concrete (and oversimplified) depiction of what a pattern can

generate .. 234
Figure 9.1: Core structures of concepts “triangle” and “quadrilateral” in LTM 252
Figure 9.2: Platonic “line segment” added in Figure 9.1.................................... 253
Figure 9.3: Easing the spreading of activation in Slipnet 254
Figure 9.4: The sigmoid function f of an activation (Figure 7.17, repeated)...... 257
Figure 9.5: An association (a), and a relation (b) ... 259
Figure 9.6: Numerosity and relational nodes of a rectangle 262
Figure 9.7: The LTM index, an interface between the Workspace and LTM 262

 xx

Figure 9.8: Indexical (numerosity and relational) nodes of a trapezoid 263
Figure 9.9: A subset of indexical nodes is activated by a trapezoid 263
Figure 9.10: With both positive and negative examples, the set can be delineated

properly .. 265
Figure 9.11: Inductive delineation of a set using only positive examples and the

time dimension... 267
Figure 10.1: Pipelined execution of retinal and cognitive levels........................ 273
Figure 10.2: Left: original image; Right: black-and-white rendering by the

preprocessor ... 274
Figure 10.3: First filtered transformation applied on original image (left; result on

the right)... 275
Figure 10.4: Pipelined processes at the retinal level... 278
Figure 10.5: Input for process A: original (a), and magnified ×2 in a visual box

(dashed lines) (b).. 280
Figure 10.6: Sample of random pixels created by process A 281
Figure 10.7: Traditional sequential processing (a), vs. random processing in

Phaeaco (b)... 282
Figure 10.8: Pixels at different “depths” in a figure ... 284
Figure 10.9: A piece of input (magnified on the right) and concentric squares

around a pixel... 285
Figure 10.10: Example of endoskeleton pixel on the left, and counter-example on

the right... 287
Figure 10.11: Successive stages in the accumulation of endoskeleton pixels 288
Figure 10.12: Initial tentative line-segment detectors given a few data points .. 288
Figure 10.13: More data points keep the evolution of detectors in progress...... 289
Figure 10.14: Most of the survivors are the desired, “real” detectors 290
Figure 10.15: Guessing an intersection and examining its neighborhood 291
Figure 10.16: The lines on the left, if extended, coincidentally intersect on the line

on the right.. 292
Figure 10.17: Generation of “rays” from a source pixel, searching for border

pixels .. 292
Figure 10.18: Simple input with ambiguous parsing in line strings 293
Figure 10.19: Actual curved object and its approximation by a line string........ 295
Figure 10.20: Closeness of endoskeleton pixels to the tangent line: curve (a); no

curve (b) ... 295
Figure 10.21: Three line detectors for what should be seen as a single line

segment... 297
Figure 10.22: Algorithm for computing the closure (or “openness”) of a region299
Figure 10.23: Object with many small lines ... 301

 xxi

Figure 10.24: Conversion of a neighborhood of pixels into a single pixel with
“gray” value.. 302

Figure 10.25: Intermediate step in the shrinking of an object 302
Figure 10.26: Final step in the shrinking of an object .. 302
Figure 10.27: Successive steps in zooming small objects 303
Figure 10.28: Successive stages in the derivation of convex hull 304
Figure 11.1: Contrast between colors, white vs. black 306
Figure 11.2: Different cases of group formation depending on the distances

between points ... 307
Figure 11.3: BP #13, in which two groups (patterns) of shapes are perceived per

side ... 308
Figure 11.4: Pattern of left and right side of BP #3 .. 309
Figure 11.5: The two distributions of areas shown as two Gaussian-like curves312
Figure 11.6: Two difficult to separate distributions.. 313
Figure 11.7: An idea for a solution in BP #2 .. 314
Figure 11.8: Representation of tested ideas .. 317
Figure 11.9: The “trickster” BP #192 ... 320
Figure 11.10: BP #28, requiring a combination of simple percepts 322
Figure 11.11: BP #37, where the squares are mere distractors........................... 323
Figure 11.12: BP #7, necessitating re-parsing of the contents of some boxes.... 325
Figure 11.13: BP #137, where there is something in nothing............................. 326
Figure 11.14: BP #46, in which Ockham’s razor cannot be ignored.................. 327
Figure 11.15: Unnatural parsing possibilities for box 1C of BP #46.................. 328
Figure 11.16: The Kanizsa triangle illusion.. 328
Figure 11.17: BP #186: one level of detail vs. two levels of detail 329
Figure 11.18: BP #98, an exercise in figure–ground distinction 330
Figure 11.19: Typical input expected to baffle computers 331
Figure 12.1: “Line λ1 touches line λ2 at point P” .. 334
Figure 12.2: The relation “touches”, abstracted slightly..................................... 335
Figure 12.3: Is this the same relation? .. 335
Figure 12.4: Abstraction for a transitive verb with two arguments 337
Figure 12.5: Representation of “I see a colored object” 350
Figure 12.6: Representation of “I see my representation of a colored object” ... 350

 xxii

Part I: Bongard’s World

 1

 2

CHAPTER ONE

Prologue with a Book’s Epilogue
1 Prologue with a Book’s Epilogue

1.1 Introduction

In 1967, Проблема Узнавания (The Problem of Recognition) was published in

Moscow. Its author, Mikhail Moiseevitch Bongard, then entirely unknown in the

scientific community of Western Europe and the U.S.A., was interested in the

automation of visual perception. He could afford only as much complication in

the visual input of his domain as the limited abilities of computing systems of his

time and place would allow. Thus, he opted for a black-and-white world of static

figures in two dimensions, in which objects could be either outlined or filled,

essentially with a single “color” used for both outlining and filling, and

everything else considered “background”.

Bongard’s book was translated into English and published in the United States

under the title Pattern Recognition (Bongard, 1970, pp. 656-661). A few years

later, this translation caught the attention of Douglas R. Hofstadter, who was

working on his book Gödel, Escher, Bach: an Eternal Golden Braid (henceforth

GEB) (Hofstadter, 1979). Hofstadter, however, was less impressed by the ideas

developed in the main text of the book than by an appendix that contained 100

problems of visual pattern recognition and categorization. He featured several of

these problems in Chapter XIX of GEB, in a section titled “Bongard Problems”

(henceforth BP’s), which is the term that has prevailed thereafter in the literature.

 3

 Prologue ook’s Epilogue

4

Figure 1

A typical

each of whic

statement tha

describe the c

1.1) the descr

aesthetically

right side bu

follows, solut

1 Throughout th
I-E, and I-F on t
2 Although all d
restriction impo
drawings inclu
Furthermore, th
see later, at leas

I I
Class

.1: BP #6; one of the simplest Bongard problems, con

 F

 BP consists of 12 boxes,1 six on the left an

h contains a drawing.2 The task of the BP

t describes the contents of each box on the

ontents of any box on the right side. For exa

iption is simply “triangle”. Quite often (and

pleasing BP’s), there is a contrasting descri

t not on the left, as is the case in BP #6 (“

ions with such dual descriptions will be give

e rest of this text, boxes will be indexed as shown in
he left side, and II-A, II-B, II-C, II-D, II-E, and II-F on
rawings shown in this text will be black-and-white
sed upon BP’s. Indeed, as will be discussed in §2.
ding colors (e.g., true photographs), a third dim
ere is no requirement that the number of boxes per si
t one researcher (Maksimov, 1975) experimented with
 with a B

Class I
A
 B
 A
trasting two patterns

igure 1.1:

d six on the right sid

solver is to discover

 left side, but does n

mple, in BP #6 (Figu

this is true for the mo

ption that holds on t

quadrilateral”). In wh

n with both parts (e.g

 I-A, I-B, I-C, I-
 the right side.

only, this is not a necessa
3.1, one can easily imagi
ension, and even motio
de has to be six. As we w
 different numbers of boxe
B

C
 C
D
 D
E
 E
F
 F

e,

 a

ot

re

re

he

at

.,

D,

ry
ne
n.
ill
s.

1.2 A virtual tour in Bongard’s world

5

“triangle vs. quadrilateral”), but it must be noted that, at a minimum, the BP-

solver is required to discover a description for the left side.

Hofstadter proposed in GEB a prolegomena to any future system that would

attempt to automate the process of BP-solving, reducing his ideas to a number of

principles that have heavily influenced the present work. He also created 56

additional problems, in which he pushed the ideas beyond simple pattern

recognition to abstract relations and analogy-making (Hofstadter, 1977). The

present author, who has also engaged in BP-creation, selected 44 of his own most

attractive BP’s to bring the total number of BP’s to 200 (Foundalis, 1999), all of

which are given in Appendix A.

Phaeaco (pronounced fee-AH-ko; see Appendix C for the origin of this name)

is a cognitive architecture that focuses on BP’s and proposes a computational

approach for solving them. The same name also refers to an implemented system

that, at present, demonstrates its competence in the automation of cognition by

solving a number of BP’s — most notably a subset of the 100 that were originally

designed by Bongard.

1.2 A virtual tour in Bongard’s world

Bongard’s collection of problems has certain characteristics. An initial small

number of them, through their solutions, exemplify some of the most basic

characteristics of the domain, typical of what the BP-solver must be prepared to

expect. Perceptual features such as “outlined”, “filled”, “large”, “small”,

“concave”, “curved”, “vertical”, “horizontal”, “elongated”, “open”, “closed”, and

many more, all pop up in the solutions of the first few problems. Simultaneously,

a number of elementary relations are introduced, including “more”, “less”,

“above”, “below”, “up”, “down”, “leftward”, “rightward”, “equal”, “non-equal”,

 Prologue with a Book’s Epilogue

6

and more. In what follows, the main characteristics of the domain of BP’s are

introduced, by selecting suitable representative problems for each case.

1.2.1 Solutions with difference in a feature value
Most features of shapes in the domain of BP’s are continuous, but some of them

are discrete. For example, Figure 1.2 shows a problem with a solution based on a

feature that takes on the discrete values “outlined” and “filled”. This feature will

be called texture.3

Figure 1.2: BP #3, exemplifying a feature with discrete values

BP #3 in Figure 1.2 belongs to a special category of a small number of

problems that a person can solve “instantly” merely by contrasting the “colors” of

the two sides (here, white vs. black), and seeing the groups that the corresponding

3 Not to be confused with the texture of a surface, a term used in traditional image-processing.

1.2 A virtual tour in Bongard’s world

7

shapes form (Treisman, 1986) — an issue that will be examined further in

§11.1.1. Other kinds of features, however, can have a continuous range of values,

and are not necessarily solved “instantly”.

Figure 1.3: BP #2, exemplifying a feature with continuous values

For example, BP #2 in Figure 1.3 has a solution (“large vs. small”) based on a

feature that takes on continuous values. Whether some object is “large” is not an

absolute characteristic, but a relative (contextual) one, based on the sizes of

objects in the other group. Thus, the feature with a continuous range of values in

this problem is the “area of an object”.

A third subcategory of problems with solutions based on a difference in

feature values employs the idea of numerosity, i.e., the number of something. The

“something” can be anything countable: lines, objects, straight sides, vertices,

curves, branches, and even abstract relations, such as “levels of nested-ness”.

 Prologue with a Book’s Epilogue

8

Although computationally the “number of something” can take on any value

(such as, “1263 pixels”), the cognitive notion of numerosity is different, in that its

resolution is finer at small values (1, 2, 3,…), but becomes progressively coarser

for higher values (e.g., 47 is virtually indistinguishable from 48); more will be

explained in §7.3.

Figure 1.4: BP #31, a solution based on numerosity (of curves)

Figure 1.4 shows BP #31, the solution of which is “one curve vs. two curves”.

In BP’s, the numerosity values employed in a solution are never in the range in

which human cognition has a hard time (e.g., “47 vs. 48”).

1.2.2 Existence
A second common theme among the solutions of BP’s is the existence of

something. The next two BP’s exemplify this idea.

1.2 A virtual tour in Bongard’s world

9

Figure 1.5: BP #1, existence of objects (on the right side)

Figure 1.6: BP #40, existence of imaginary straight lines

 Prologue with a Book’s Epilogue

10

BP #1 (Figure 1.5) is more interesting than a casual look at it might reveal, in

that its solution can be arrived at in two ways: one is the “immediate” way, by

contrasting the “whiteness” on the left side against the existence of dark areas and

lines on the right (similar to BP #3, Figure 1.2); but another way is to contrast the

existence of an internal representation on the right side (a thought of “something

that exists”, however vague that might sound now — it will become clearer in

later chapters) against the nonexistence of a representation on the left. This

second way of reaching the solution works at a meta-level, because it describes

representations of objects, rather than the visual objects themselves.

1.2.3 Structural and relational differences
The term “structural difference” refers to visual objects forming structurally

different patterns, as in BP #6 (Figure 1.1). Another example is presented below.

Figure 1.7: BP #69, exemplifying a structural difference

1.2 A virtual tour in Bongard’s world

11

BP #69 (Figure 1.7) has a solution with a structural difference: the pattern on

the left side is, “a tree with a dot at the tip of the trunk”, whereas the pattern on

the right is, “a tree with a dot at the tip of a branch”.

Slightly different are the rules that include a “relational difference”.

Figure 1.8: BP #45, exemplifying a relational difference

The rule in BP #45 (Figure 1.8) is based on a relation: on the left, the outlined

figure is on top of the filled one, while on the right the relation is reversed.

It now becomes clear that it is not always possible to make a sharp distinction

among structural and relational differences. On the one hand, the objects in the

boxes of the left side of BP #45, for example, might be seen as forming a

structure consisting of two parts, one filled and the other outlined, such that the

outlined part always occludes the filled part. On the other hand, the tree-like

structures in Figure 1.7 might be seen as described by a relation: the dot stands on

 Prologue with a Book’s Epilogue

12

the tip of the trunk on the left, but does not do so on the right. Thus, we reach a

notion that will become very familiar in this work:

A visual pattern is an abstraction, or generalization, that is based on a number

of concrete visual objects. Examples are the triangles and quadrilaterals of BP #6

(Figure 1.1), the tree-like objects of BP #69 (Figure 1.7), and relations such as

those of BP #45 (Figure 1.8). A visual pattern is a sort of statistical average, in

which the parts of a structure, or relation, and the values of features, are averaged.

This notion is of crucial importance in the architecture of Phaeaco, and will be

described more rigorously in chapter 8.

1.2.4 Relation within a single box

Figure 1.9: BP #56, with sameness within each single box

BP #56 (Figure 1.9) is of yet a different kind. Here, the relation on the left side is

“uniformity of texture (§1.2.1)”, but the relation (uniformity) is to be found not

1.2 A virtual tour in Bongard’s world

13

across boxes, but within each single box. Thus, the solution for BP #56 is, “every

object has the same texture”. This type of solution generalizes into one that reads,

“relation X holds on feature Y”. (See also BP’s #22 and #173 in Appendix A.)

1.2.5 Solutions and aesthetics
There are certain BP’s, often very interesting ones, that do not easily lend

themselves into the previous classifications. Consider Figure 1.10.

Figure 1.10: BP #108, types of “flowers”

BP #108 (Hofstadter, 1977) contains “flowers” in all 12 boxes, but the

“petals” of the flowers on the left taper off, while those on the right grow thicker,

in some abstract sense. This problem could be categorized as “different structures,

or patterns” (§1.2.3), but what exactly it is that makes these structures different (if

we want to be precise and avoid references to terms such as flowers, petals, etc.,

which are non-geometrical and foreign to a non-terrestrial culture) is hard to

 Prologue with a Book’s Epilogue

14

define in formal terms, using geometric primitives. The simplification that occurs

by using terms such as “flower” and “petal” is what makes this BP appealing.

A totally different example is shown in the following figure.

Figure 1.11: BP #121, with a code-breaking type of rule

In BP #121 in Figure 1.11 (Hofstadter, 1977), the shapes above and below the

horizontal line in each box adhere to a kind of code, which, on the left, can be

stated as follows:

• Each VV corresponds to a circle
• Each ΛΛ corresponds to a triangle
• Each VΛ corresponds to a square
• Each ΛV corresponds to “empty”
• Finally, left-over (single) V’s or Λ’s are ignored

The assignment of V’s and Λ’s to shapes on the right side is exactly reversed.

Other aesthetically pleasing problems are those with solutions having multiple

levels of description, or “recursion”. For example:

1.2 A virtual tour in Bongard’s world

15

Figure 1.12: BP #70, one vs. two levels of description

Figure 1.13: BP #71, two vs. one level of description

 Prologue with a Book’s Epilogue

16

In BP #70 (Figure 1.12), the dual solution is: “major stem branches into single

twigs, versus major stem branches into twigs that may branch for a second time”.

In BP #71 (Figure 1.13), which looks superficially very different, the theme is

essentially the same (with the roles of the sides reversed) at a more abstract level:

“object within object within object, vs. object within object”. In other words, two

levels of recursively using the relation, versus a single one.

It is not coincidental that in Bongard’s list of problems, BP #71 appears

immediately after its twin sibling, BP #70. Bongard made use of the idea of

priming in his collection. Often, after introducing an idea through a problem, he

uses it — but disguised behind different façades — in subsequent problems.

Last but not least, not all BP’s are relatively easy to solve: some of them are

downright hard.

Figure 1.14: BP #112, a paragon of simplicity

1.2 A virtual tour in Bongard’s world

17

BP #112 (Figure 1.14), for example, looks deceptively simple (Hofstadter,

1977). Yet it is probably one of the hardest problems in the entire collection of

200. Another hard problem, BP #180 (Foundalis, 1999), is presented below. (The

solutions of BP #112 and BP #180 are left as challenges for the reader, but can be

found in Appendix A as a last resort.)

Figure 1.15: BP #180, another seemingly simple but hard problem

There are many more ideas that have been expressed in BP’s (some of which

will be discussed in subsequent chapters), and even more ideas that can be

potentially expressed. Bongard’s domain is profoundly rich in cognitive content

— much richer than hinted at in the present introduction. In the chapters that

follow, an attempt is made to reveal this complexity, and the means by which

Phaeaco navigates the challenges.

 Prologue with a Book’s Epilogue

18

CHAPTER TWO

Why Are BP’s Cognitively Interesting?
2 Why Are BP’s Cognitively Interesting?

2.1 Questioning microdomains

At least since the early 1970’s, a dilemma has been facing Artificial Intelligence

(AI). In the early days of AI, systems were often built by choosing a problem

domain and then stripping away its real-world “burden” — the details that

grounded the problem in the real world, and which were considered superficial.

Thus purified and crystallized, “the problem” — evidently a caricature of its real-

world counterpart — was modeled in a computing system. The modeler’s claim

would be, typically, “The problem has been solved in its abstract form; it now

suffices merely to add some details to turn it into an implementation of the

original problem in the real world.”

The trouble with this approach is that the missing details, which were

originally considered superfluous, are in reality the determining factor that

renders the crystallized solution useless. This discovery is known as “the scaling-

up problem” in AI: it is the thesis that it is impossible to start from the “crystal”

and work one’s way up toward the real-world problem by merely adding details in

a piecemeal fashion, thereby obtaining an intelligent computer program. Typical

examples of this situation can be found in programs that worked in so-called

“blocks worlds” (i.e., simulated geometric solid blocks placed on a tabletop)

(Huffman, 1971; Waltz, 1975; Winograd, 1972; Winston, 1975).

 19

 Why Are BP’s Cognitively Interesting?

20

A different problem concerns the motivation and goals of early work in AI.

Researchers would typically select a microdomain, not in order to investigate the

foundations of cognition, but to be able to claim that the microdomain is “solved”,

or “automated” by their approach, while offering no overall perspective on how to

generalize from their particular case. Some examples are various expert systems

that were proposed in the 1980’s as computerized solutions for engineering and

medical decision-making issues, and Thomas Evans’s ANALOGY program,

solving geometric analogy problems taken from IQ tests (Evans, 1968). Figure 2.1

shows an example of a problem that could be solved by Evans’s program, which,

contrary to widespread belief, did not examine images at the pixel level. Instead,

its input co prised hand- epared relatio al expressions written in a Lisp-like

form, repre nting the imag s to some exte t. For the pitfa s of this approach, see

also §4 .

: :::

Figure 2

Given t

the process

Indeed, on

vision, the

human visi

The sho

model for s
m

se

A

.1: One of Evans’s

his background

 of BP-solving

e might imagin

problem at han

on by reducing i

rt response to t

uccessfully auto
pr

e

B

geometric analogy

in AI, one migh

 is merely ano

e that the real

d is how to au

t to Bongard’s m

his concern is t

mating visual p
n

n

C

.1

1
 2
 3

proble

t natu

ther i

-world

tomat

icrow

hat P

ercep
4

ms: A is to B as C

rally wonder

nstance of do

 domain in

e it, and that

orld.

haeaco’s goal

tion or image
5

ll

?

 is to ? (answer: 3)

whether automating

main trivialization.

this case is human

 Phaeaco trivializes

 is not to provide a

processing. Instead,

2.2 BP’s as indicators of cognition

2.2 BP’s as indicators of cognition

21

Phaeaco uses the domain of BP’s as a litmus test for its proposed set of principles

that presumably lie at the core of cognition. Phaeaco should be construed as a

cognitive architecture rather than as an automated BP-solver.

A longer response is provided in the remainder of this chapter. First, it is

demonstrated that the domain of BP’s includes some elements that appear to be

quintessential in human cognition. And second, it is argued that the domain itself

is deceptively perceived as a microdomain, and should not be understood as being

limited by rigid boundaries. In the domain of BP’s the mind is the limit, as will

hopefully become evident in the sections that follow.

The following sections examine the relevance of Bongard’s domain to cognition.

In each subsection, some fundamental aspect of cognition is examined and shown

to be required for the solution of some BP that has certain properties.

2.2.1 Pattern formation and abstraction
Suppose that an observer who has no prior knowledge of alphabets, letters, or

other culturally related notions is given the following instances of visual input one

at a time, each appearing shortly after the previous one is erased (Figure 2.2).

Figure 2.2: Instances of visual input

An observer with human-like cognition neither forgets each instance after it is

replaced by its successor, nor simply stores it in memory; instead, the observer

 Why Are BP’s Cognitively Interesting?

22

forms a visual pattern out of the given input instances. This pattern can be either a

sort of “summary representation” of the individual instances, as in the prototype

theory of concepts (Hampton, 1979; Rosch and Mervis, 1975; Smith and Medin,

1981), or the individual instances themselves, as in the exemplar theory of

concepts (Lamberts, 1995; Medin and Schaffer, 1978; Nosofsky and Palmeri,

1997), or some alternative (Goldstone and Kersten, 2003; Hofstadter, 1995a;

Murphy and Medin, 1985; Rehling, 2001). (More on theories of conceptual

representation in §6.1.) Regardless of what components constitute the visual

pattern, the latter encapsulates some information. For example, the observer

knows that the slopes of the slanted lines in Figure 2.2 are within some bounds,

and the altitude of the horizontal-like line is typically within some limits. Not only

are there limits to the variation of such features, but there is also a mean value and

a variance. These are perceptible because the observer can reproduce a “typical”

instance upon request, which will have the horizontal-like line, for example,

positioned close to the middle of the figure. Conversely, the farther away from the

middle this line is placed, the more atypical the produced instance will look.

Figure 2.3: One way to depict a summary representation of the input in Figure 2.2

Figure 2.3 shows pictorially some of the statistics perceived by the observer.

In particular it shows the average and variation in slope of the two slanted sides,

the location of the horizontal line, and possibly the width of various lines (but

note that lengths are not drawn to scale). It also omits several other features that

are possibly perceived, such as the occasional short lines at the bottom and top of

2.2 BP’s as indicators of cognition

23

some input instances (the serifs). It must be emphasized that Figure 2.3 depicts

neither a visual pattern according to some particular theory of conceptual

organization (e.g., the prototype theory), nor Phaeaco’s representation of a

pattern. It merely suggests the idea of a “visual pattern” for the purposes of the

present discussion.

Visual patterns are formed by the contents of the six boxes on each side of a

BP. Often, the patterns of the two sides do not exhibit an immediate difference,

i.e., the observer perceives the same pattern on both sides after just a cursory look.

Figure 2.4: A cursory look allows perception of a single pattern only in BP #53

Consider BP #53 in Figure 2.4. The pattern formed on both sides can be

described succinctly as “polygon inside polygon”. Most solvers discover the

difference in the number of sides between the inside and outside polygons only

after a careful examination of each individual box and after reaching the idea

 Why Are BP’s Cognitively Interesting?

24

“count the sides”. Another such example is BP #108 (Figure 1.10). Some

problems, however, the solutions of which are usually based on a structural

difference (§1.2.3), do exhibit patterns on the two sides that are more readily

perceptible as different, as in BP #6 (Figure 1.1) and BP #183 (Figure 2.5).

Figure 2.5: The different patterns in BP #183 are readily perceptible

Nonetheless, a visual pattern can be formed whether or not the input instances

are similar. Consider BP #1 (Figure 1.5): the solver, observing the right side,

forms a pattern that can be described as “some figures”. Naturally, if the domain

provides a richer context (e.g., real-world, animated photographs), the pattern on

the right side of BP #1 will be more specific (e.g., “black-and-white, two-

dimensional, still figures”). The way the context influences what is and is not to

be included in a pattern is subtle and fundamental in cognition, and will be

examined in more detail in §8.2.3.

2.2 BP’s as indicators of cognition

25

2.2.2 Pattern-matching, recognition, and analogy-making
Just as storage is meaningless without retrieval, so pattern formation is useless to

a cognitive system without pattern-matching, i.e., the ability to retrieve a pattern

that matches best with a new input instance. Bongard and other scientists have

long appreciated the importance of this cognitive ability. Hofstadter has opted for

the term analogy-making (Hofstadter, 1995a), because he is interested in the more

abstract, higher-level, fluid, human-specific manifestation of this mechanism. In

truth, there is no sharp dividing line between “pattern-matching” and what most

cognitive scientists would accept as an instance of analogy-making. Consider

Figure 2.6.

Figure 2.6: Input instances that progressively deviate from a given instance (top)

 Why Are BP’s Cognitively Interesting?

26

The learned pattern depicted in Figure 2.3 matches (i.e., the statistics of its

features include squarely the features of) the top instance of Figure 2.6. Moving

progressively, however, toward the two instances at the bottom, we pass into an

area where a mechanism finding any resemblance between the learned pattern and

these two instances would be more appropriately called “analogy-making”. This

is because the statistics of the learned pattern describe neither the complexity of

the bottom-left instance, nor the simplicity of the bottom-right instance; hence,

neither of these two instances matches the pattern. Still, some components of their

structures can be seen as analogous to components of the pattern. Somewhere

between them is a gray area of input instances for which it is difficult to call the

mechanism either “pattern-matching” or “analogy-making” (see §8.4).

The domain of BP’s abounds with problems throughout the entire spectrum

from pattern-matching to analogy-making.

Figure 2.7: Analogy making in BP #97 (or is it pattern formation and matching?)

2.2 BP’s as indicators of cognition

27

BP #6 (Figure 1.1, “triangle vs. quadrilateral”) is an example of simple pattern

formation and matching: the pattern of a triangle is formed out of the six instances

on the left, and is contrasted with the pattern of a quadrilateral formed out of the

six instances on the right. Similarly, the pattern of a triangle is at work on the left

side of BP #97 (Figure 2.7), but in this case the degree of abstraction required is

higher: the solver must perceive, for example, that each row of small circles in

box I-C forms (is analogous to) a side of a triangle — a perceptual feat that is

neither automatic, nor trivial, as will be shown in §3.1.1. BP #170 (Figure 2.8)

moves even further along the spectrum toward analogy-making, requiring the

solver to retain only the essence of the structure in each of the 12 boxes, mentally

eliminating the irrelevant details. Seeing the analogous parts in these figures is an

example of analogy-making (see also §8.4).

Figure 2.8: Analogy-making seems to be at work on the left and right sides in BP #170

 Why Are BP’s Cognitively Interesting?

28

2.2.3 Clustering and Categorization

Figure 2.9: BP #166, an example of involuntary clustering

Consider BP #166 (Figure 2.9). Looking at this problem, we instantly see not

merely dots, but clusters of dots. The construction of clusters of “things that go

together” is another fundamental mechanism of cognition. It is the same

mechanism that allows us to separate leaves from pebbles on the ground; place

toasters, blenders, ovens, refrigerators, and coffee-makers in one mental category

(“electrical appliances”); and even construct ad hoc, spontaneously manufactured

concepts under pressure, such as children and jewelry as “things to take out of a

house in the event of a fire” (Barsalou, 1983).

The placement of dots into groups in BP #166 is automatic: our visual system

cannot avoid the perception of dot-clusters. In other cases, however, some mental

effort is required to perceive the categories. Consider BP #90.

2.2 BP’s as indicators of cognition

29

Figure 2.10: What constitutes a cluster in BP #90 is not immediately obvious

A cursory look at the ovals in BP #90 (Figure 2.10) might lead us to perceive

first the clusters consisting of ovals that touch each other (i.e., the connected

components in each box), but these are irrelevant to the solution. The solution can

be reached only via the idea (conscious or subconscious) of focusing on white

ovals connected with each other. This idea is reached under the (mild) pressure

constituted by the thought “I have been asked to solve BP #90”. A more urgent

pressure, such as the smell of burnt material in a house, can lead to the previously

mentioned ad hoc category of “precious object”. Although the special term goal-

derived category has been reserved for this latter kind of categorization in

psychology, Phaeaco treats all categorization in a uniform way (see chapter 8).

It might be thought that categorization and pattern-formation (§2.2.1) are the

same mechanism. To avoid any possible confusion, “categorization” will be used

in the present text to refer to the assignment of an element to an already existing

 Why Are BP’s Cognitively Interesting?

30

cluster, whereas “pattern-formation” will refer to the process of clustering, i.e.,

the formation of a category, which, as will be explained in chapter 8, includes a

core, a halo, and possesses statistical properties.

2.2.4 Memory and learning
The ability to learn new patterns, storing them in a long-term memory (LTM) and

retrieving them later, is a fundamental property of cognition that can be examined

in the domain of BP’s. Forming a pattern (§2.2.1) is, of course, a type of learning;

but it can occur also in short-term memory (STM), and represents a single facet of

the complex problem of learning. STM-type learning is exhibited by simple4

biological creatures (e.g., spiders) as habituation: a spider can be “habituated” to

stop rushing toward the source of stimulation on its web after repeatedly finding

out that the source is inedible (Arms and Camp, 1988). More complex creatures,

however (e.g., most vertebrates, some mollusks, etc.), possess an LTM, which

makes them capable of exhibiting more cognitively interesting behaviors,

including (among a few mammals) the sense of “self ”, which they acquire by

being able to know that they are “the same” individuals they were days, months,

and years ago. A biological creature lacking LTM is more or less an automaton

that responds to stimuli only on the basis of “now” (or, at best, “a few moments

ago”).

It is important that a BP-solving system possess LTM for the following

reason. Consider a system S´ that possesses LTM and a system S that lacks it, all

other features of S´ and S being identical. Assume that among the identical

features shared by S´ and S are a set of visual primitives P. Then S is capable of

solving only those BP’s with solutions that can be expressed by a relatively

4 To avoid controversy regarding the biological meaning of “simple organism”, the term is used
here to mean an organism that appeared relatively early in evolutionary history.

2.2 BP’s as indicators of cognition

31

simple combination of elements of P, whereas S´, being able to learn new

concepts — turning them into a new layer of “primitives” P´ in LTM — is in a

position to reach more directly the solution of a much larger number of BP’s.

Although in principle S is also capable of reaching the solution of the same BP’s

as S´ (since, after all, all solutions must be expressible by the same set of

underlying primitives P), this remains a theoretical possibility only: a capable and

careful tutor can lead S´ into learning those concepts (P´) that are relevant to the

solution of a large number of BP’s, whereas S must struggle to “discover” those

concepts by itself, always holding everything in LTM. Given the exponentially

large number of concepts that are combinatorially expressible in terms of

primitives, chances are that S will not reach the solution of those additional BP’s

within a reasonable amount of time.

Figure 2.11: Learning and an LTM seems to be necessary in BP #100

 Why Are BP’s Cognitively Interesting?

32

A BP that demonstrates this idea is the last one in Bongard’s original

collection. The boxes on the left and right side in BP #100 (Figure 2.11) seem to

be insufficient by themselves to define what each corresponding pattern is.

Geometrical properties, such as a closed area, a pointy top, or two “legs” at the

bottom, are inadequate for a definition of the pattern either because some

members of the defined side lack those features, or some members of the other

side possess them. Only a learner who has been trained by hundreds of examples

of the Cyrillic letters “A” and “Б” in various fonts and has created such concepts

in LTM is able to solve this problem.

One might counter-argue that the patterns for “A” and “Б” can be learned in

STM alone, assuming each side of this BP contains hundreds of boxes. Although

this is true, there are two problems with this idea: first, we (possessing LTM) are

able to solve BP #100 as it is, with only six boxes per side; and second, a system

that forgets all that it has learned once it is turned off and has to undergo an

arduous process of re-learning by being exposed to hundreds of examples each

time is utterly unsatisfying. No real cognitive creature blanks its memory and re-

runs the education of its childhood every time its cognition is reactivated after a

period of inactivity. Accordingly, Phaeaco possesses LTM, which resembles the

Slipnet of Copycat (Mitchell, 1990), but has certain additional features. The

details are discussed in chapter 9.

2.2.5 Design and creativity
An issue that exceeds the scope of the present thesis (and yet must be mentioned,

because it suggests a direction for future development) is that of designing BP’s.

Can a program exhibit creativity by designing genuinely new BP’s that not only

present a challenge to the solver but are also aesthetically pleasing (§1.2.5)? How

is creativity limited (if at all) by the number of primitive (“hardwired”) perceptual

2.2 BP’s as indicators of cognition

33

elements (i.e., innate knowledge of points, lines, slopes, etc.) of the program? Is

Phaeaco’s architecture sufficient to address the problem of creativity, or would a

major architectural reorganization be necessary? These are all interesting

questions that can be explored in future projects.

2.2.6 Language and communication
By addressing the grounding problem in language, the BP domain can be a

platform for generating and testing hypotheses concerning relationships between

vision and language. Phaeaco builds relatively rich internal representations of the

figures it receives as input, but describes linguistically the attributes of such

representations in a trivial way, by outputting pre-manufactured5 English words

that more or less correspond to such attributes (more in §5.2). A more thorough

linguistic approach can be envisaged, in which it is learned that the morphemes of

a language are formed out of smaller constituents (graphemes or phonemes), and

that such linguistic units (the morphemes) are associated with (“grounded” in)

visual percepts. Combinations of morphemes can then be used to describe more

complex portions of representations. A proper approach in such a linguistic

system requires that the system learn the syntactic rules of the language,

according to which morphemes are combined together to express internal

representations. It would then be possible to examine the problem of language

development and communication between the system and a human interlocutor,

which is absent from the present stage of Phaeaco’s implementation.

5 This means that the English words that Phaeaco outputs at present have been hardwired into its
code and resource files, although as will be explained in §5.2 there is a mechanism by which new
words can be added.

34 Why Are BP’s Cognitively Interesting?

2.3 On the futile quest for a precise delineation of BP’s

Two related issues are examined in this section. The first is the suggestion that

cognitive interest in the BP domain is limited because it is a microworld, akin to

chess and tic-tac-toe: it does not scale up. The second issue concerns the attitude

assumed by some researchers when confronted with this domain: “Let us define

precisely what the domain is.” In the following subsections, the first idea is shown

to be incorrect, and the second one inappropriate.

2.3.1 Beyond Bongard’s world
Bongard did not specify explicitly any restrictions on his problems, but some

limitations can be inductively inferred. For example, all problems in his collection

consist of black-and-white figures, suggesting black-and-white pixels if converted

to digital form. His figures are also two-dimensional and, of course, static

(lacking motion). A subtler characteristic is that the rules that solve BP’s should

be based on the geometry of the input only. This means that a geometer, using no

culture-specific knowledge, should be in a position to understand the rule. Thus, a

BP that shows triangles and rectangles is a valid one, but a “BP” that contrasts

furniture with kitchen utensils is invalid. This principle follows inductively by

examining all 100 problems designed by Bongard, although there are occasional

instances in which it could be argued that he ventured slightly outside this

“geometry only” principle (for some examples, see BP #69 in Figure 1.7, and BP

#100 in Figure 2.11). Hofstadter’s BP #108 (Figure 1.10) is another case in point.

The examples that follow attempt to show that Bongard’s world can be richer than

first imagined, even adhering to the restrictions implicitly present in the domain.

2.3 On the futile quest for a precise delineation of BP’s

35

Figure 2.12: BP #196, with “shades of gray” (“colors”?)

BP #196 (Figure 2.12) is the first in a series of problems designed to

exemplify the flexibility in the conception of a BP afforded by the domain. In BP

#196 the textured area of each box can be seen as a shade of gray, if perceived as

an average number of black pixels per unit of area (which is the metric that can be

used in the solution of this problem). From a more abstract perspective, however,

such textured areas can be construed as substitutes for colors. Naturally, adding

real colors would lead to a further extension of the domain.

In chapter 10 it will be explained that Phaeaco can perceive not only shades of

gray, but true colors of photographic quality (§10.1), and can represent them

internally, although it cannot perceive complex real-life objects at present.

 Why Are BP’s Cognitively Interesting?

36

Figure 2.13: Objects with three dimensions in BP #63

Bongard experimented with the idea of three dimensions, but only within the

overarching principle that the solution must be easily derivable from the two-

dimensional geometry of the input. For example, in BP #63 (Figure 2.13), the

geometric solution is that, on the left, the rightward sides of the objects are

thicker, while on the right the leftward sides are thicker. Although the dichotomy

“thicker vs. thinner” is sufficient for a correct description of the solution, the

human visual system perceives immediately the thickness of each object in the

third dimension, and interprets the thicker sides as shadows produced by the

different orientation of the source of light on each side of the problem. Indeed, the

concept of “shading” was Bongard’s preference for expressing the solution

(“shading thicker on the right vs. shading thicker on the left”).

A problem that utilizes directly the ability of our visual system to perceive in

three dimensions is the following.

2.3 On the futile quest for a precise delineation of BP’s

37

Figure 2.14: Direct perception of third dimension in BP #195

In BP #195 (Figure 2.14), each box contains objects separated with a vertical

bar in a left and right group. Horizontally, the corresponding elements of each

group are identical. In the left-side boxes of BP #195, the lower two objects are

closer together than the upper two ones (the opposite relation holds in the right-

side boxes). If the left group of objects in a single box is directed to our left eye,

and the right group in the same box to our right eye, our visual system perceives a

single group (with both eyes) within the box, where the lower object stands out in

the third dimension, in front of the upper object. (On the right side, the lower

object appears behind the upper one.) In neurological terms, our visual cortex

records the visual disparity of the images of the upper and lower objects, and the

magnitude of this disparity gives us a measure of the distance in the third

dimension between the two objects (Thompson, 1993).

 Why Are BP’s Cognitively Interesting?

38

Figure 2.15: Motion in BP #198

Figure 2.16: Navigation in BP #176

2.3 On the futile quest for a precise delineation of BP’s

39

One might argue that if colors and a third dimension do not impose limits on

what is explorable in the static world of BP’s, motion does. But BP #198 (Figure

2.15) offers a counterexample in which motion is perceived as a series of

snapshots along the trajectory of a moving object. The solution of BP #198 is that

the “moving” object arrives and stays in a certain region on the left (or starts off

from the region and moves out of it), but passes through the region on the right.

BP #238 (Figure 2.16) is related to motion, but of a different nature. Here we

have a problem of navigation. In each box the lower dot is reachable from the

upper dot with a (possibly curved) line that does not cross or touch any of the

intervening “obstacles”. On the left side, all dot-connecting pathways of minimum

length are much shorter than the corresponding minimum-length pathways on the

right side.

Figure 2.17: A different navigational problem in BP #175

 Why Are BP’s Cognitively Interesting?

40

The issue of navigation is encountered also in BP #175 (Figure 2.17), as

trying to pass a smaller object through the “orifice” of a larger one. The problem

here is not merely one of measuring the overall size of the small object and testing

whether it is smaller than the “empty area” inside the larger object, because

several boxes on the right side conform to this description. Nor is it one of simply

gliding the smaller object leftwards: the objects of the boxes I-C and I-F must be

rotated to pass through the orifice. To solve this problem a mental model of the

motion of the smaller object must be made. We often encounter such puzzles in

real life, e.g., having to move a car out of a parked position in a non-obvious way,

or having to pass a large piece of furniture through the door of a room.

Figure 2.18: Motion combined with gravity in BP #199

Before leaving the subject of motion, consider BP #199 (Figure 2.18). Here

the solution is that, if “gravity” were applied, the objects on the left would stay

2.3 On the futile quest for a precise delineation of BP’s

41

put, while those on the right would topple over. Even though this appears to be a

problem of physics, it is still solvable within the domain of geometry: each object

(or collection of objects) has a center of gravity, the “barycenter”; if a vertical line

through the barycenter intersects the “base” of the object, the object will remain

stable; if not, it will topple.

Figure 2.19: BP #200 is a Bongard problem about Bongard problems

Finally, if we give up geometry as a domain imperative, even the abstract idea

of self-reference is expressible. For example, BP #200 (Figure 2.19) is a problem

in which each box itself is a “Bongard problem”. The solution of BP #200 is as

follows: on the left the solution of the Bongard problem within each box is based

on the value of a simple feature (texture, area, slope, etc.); while on the right the

solution of the Bongard problem within each box is based on numerosity (number

 Why Are BP’s Cognitively Interesting?

42

of sides, objects, branches, etc.). BP #200 could thus be termed a meta-Bongard

problem.6

Thus, the domain of BP’s can be utilized to experiment with a variety of

cognitive dimensions that do not immediately appear amenable to such

experimentation. Although, to be sure, there are many issues in cognition that

would seem to be difficult to address via the BP domain (e.g., the robotic

experience of interacting with a physical world, speech recognition and

production, music perception, and many more), the hope is that the domain of

BP’s will prove to be suitable for addressing certain core issues in cognition, on

which most other issues are based.

2.3.2 Defining the domain
Some researchers, when confronted with the BP domain, try to define precisely

(mathematically, if possible) the problem at hand.7 Usually this is the case with

people who, having strong mathematical training and background, are accustomed

to giving precise definitions to the objects they study. Under this approach,

anything undefined (or “ill-defined”) cannot be an object of scientific inquiry.

Specifically, they would like to describe a function F(x), in which x is a piece of

visual input (a m × n matrix of pixels, for example, where each pixel is a number

from a suitable range of possible numbers), and F returns true if x is a “valid” BP,

and false otherwise. In other words, F would characterize some inputs as BP’s,

and all others as non-BP’s.8

6 The author and Joseph A. L. Insana have created an entire collection of meta-BP’s (and even
meta-meta-BP’s) (Foundalis, 2001).
7 Thanks to Ralf Juengling (personal communication) for bringing up this issue.
8 Hence, F is a total recursive function in computability terms, or a decidable algorithm.

2.3 On the futile quest for a precise delineation of BP’s

43

The problem with this attitude is that it creates an arbitrary group of objects,

christened “valid BP’s”, or “the BP’s we want to study”, whereas no such group

exists objectively in reality. What exists in reality is the human mind and its

fascination with some puzzles. The precise delineation of those inputs considered

to be valid BP’s fundamentally changes the nature of the cognitive quest. Instead

of: “Here is a set of problems that appear interesting to people; let us explore the

cognitive mechanisms people use to solve them”, the quest becomes: “Here is an

ad hoc set of problems; let us write a program that can solve all of them”. In this

way, rather than aiming at cognitive exploration, the solution of BP’s becomes a

self-serving end: the researcher sets out to write a program so as to claim that the

solution of BP’s in “the domain” (the arbitrarily decided one) has been fully

automated — and then possibly to move on to different domains. The pitfalls of

this approach are examined in more detail in chapter 4.

 Why Are BP’s Cognitively Interesting?

44

CHAPTER THREE

Universality and Objectivity of BP’s
3 Universality and Objectivity of BP’s

3.1 Are BP’s cross-cultural?

The present thesis is a product of a particular, but dominant, human culture, the

so-called “Western” one. The scientific world-view of this culture can trace its

roots back to the early explorations of nature by Egyptian and Mesopotamian

cultures that emerged at least 7,000 years ago. The particular geometric concepts

that are assumed, in the present text, to be fundamental and well-understood by

everyone (e.g., “triangle”) were explored to a great extent by the Greeks, as early

as 2,600 years ago. Subsequently geometry became part of primary education, and

was considered a foundational element of the arts (painting, sculpture,

architecture) and sciences (physics, astronomy). Cognitive science, however,

seeks to explore the nature of cognitive universals9, not of concepts assumed as

“givens” by a particular culture. Is the concept “triangle” understood in a

universal way across cultures, or is this impression a bias of our “Western”

culture? The following subsection attempts to shed some light on this issue.

9 In principle, cognitive science seeks to explore cognition in general, not necessarily the only
known implemented example of it, which is constrained by biological evolution. But without
knowing the answer to the question of whether cognition is implementable in a different medium
or not, it is best to confine the scope of questions asked about “universals” in this text to the single
known instance, i.e., human cognition in the context of human culture.

 45

 Universality and Objectivity of BP’s

46

3.1.1 Geometry as perceived by peasants and indigenous people
In 1931–32, the Russian psychologist Aleksandr R. Luria and his team conducted

a series of studies probing the cultural foundations of cognitive development —

that is, the extent to which culture (and language) influences the formation of

concepts. His subjects included illiterate peasants from “the remoter regions of

Uzbekistan and Kirghizia, in the kishlaks (villages) and dzhailaus (mountain

pasturelands) of the country” (Luria, 1976). Among the issues examined by Luria

was perception of basic geometric forms. The views of his subjects are interesting

in the context of the discussion on human geometric universals.

In one of the experiments (conducted in far-from-ideal conditions), Luria

showed to his subjects a list of drawings similar to the following.

1 2 3

4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19

Figure 3.1: Geometrical figures presented to Luria’s subjects

He then asked subjects to name each figure. The subjects were coming from

four different population groups: ichkari women (illiterate), women students in

short preschool courses (barely literate), collective-farm activists, and women

students at a teachers’ school. Only the last group of people — the most educated

ones among all subjects — used mostly geometrical names to name the figures

3.1 Are BP’s cross-cultural?

47

either directly (“circle”, “triangle”, “square”, etc.), or through descriptive phrases

(“something like a triangle”, “a square made of dots”). Ichkari women — the least

educated group — never referred to the geometrical shape of the figure, preferring

object-names instead. Thus, they would call a circle a moon, a watch, a bucket,

and so on; a triangle would be a tumar (an Uzbek amulet); and a square would be

a house, a door, a mirror, or an apricot-drying board. Table 3.1 summarizes the

naming preferences of the various groups of subjects.

Subject group
Number of
subjects

Geometrical
names

Object-like
names

Ichkari women 18 0.0 % 100.0 %
Women in preschool courses 35 14.7 % 85.3 %
Collective-farm activists 24 41.0 % 59.0 %
Women in teachers’ school 12 84.8 % 15.2 %

Table 3.1: Naming preferences among Luria’s subjects

Especially interesting were the answers obtained from illiterate subjects when

asked to group the figures together. For example, an illiterate woman, age 24,

from a remote village, formed the following groups.

“These are all tumars.”

5 4 16
 “That’s a glass and that’s a glass, but

with a wide bottom.”
 12 17

 “This moon should go by itself.”
 2

 “This thread should go by itself.”
 19

 Universality and Objectivity of BP’s

48

Another subject, age 19, an ichkari woman, gave the following names.

plate

tent

 brace-
let

beads

tumar

1 11 2 13 10

 kettle-
stand

mirror

cradle

4 16 5

gold
tumar

mirror Uzbek
clock

silver
tumar

mirror

8 14 6 7 12

When asked to group the figures, she put the “valuable tumars” together (7

and 8), and also the “mirrors” (12, 14, and 16), declaring that none of the other

figures were similar.

Answers along the same lines were obtained by other illiterate subjects. On

the contrary, subjects who had even minimal exposure to formal education did

make occasional use of geometric names, and the percentage of such use

increased with the sophistication of the educational background (Table 3.1).

However, the experimental method used by Luria and his colleagues,

particularly their reliance on conversation and linguistic descriptions, is highly

suspect. Recall that Luria performed his experiments in the ex-Soviet Union at a

time when it was considered imperative to amass evidence for the necessity of

educating the nation’s largely peasant population and working class. Could

further, language-independent experiments paint a different picture?

Indeed, this idea seems to be confirmed in recent experiments in which a team

of researchers led by Stanislas Dehaene studied the indigenous Amazonian tribe

of Mundurukú (Dehaene, Izard et al., 2006). Children and adults of the tribe, who

had received no schooling and had no experience with graphic symbols, maps, or

a rich language of geometrical terms, were asked to find which figure from a

3.2 Objectivity of the difficulty of various BP’s

3.2 Objectivity of the difficulty of various BP’s

49

group of six figures did not belong to the group. For example, the upper right box

in Figure 3.2 shows a non-trapezoid, whereas all the other boxes contain

trapezoids. The participants were asked to point to the “weird” or “ugly” figure.

Figure 3.2: Sample problem of type “find the odd-man-out” used by Dehaene et al

According to the study, Mundurukú adults, children aged 6, and also a control

group of 6-year-old American children all performed similarly. Only American

adults performed significantly better. However, all groups showed a shared

competence and understanding of basic geometrical concepts.

It is almost certain that performance in Bongard’s domain correlates strongly with

prior education. But given a group of people from a culture who are educated

enough to appreciate the domain a question that arises is whether there is any

property of the performance of BP-solving that can be measured objectively.

With this in mind, an experiment was administered to American college

students, aiming at establishing a more or less evident result: that some BP’s are

easy, some others are hard, and that all intermediate degrees of difficulty are

possible. Each particular BP-solver usually acquires a personal sense regarding

the difficulty of each problem they attempt to solve, but what is required is some

 Universality and Objectivity of BP’s

50

objective measure of this difficulty. A secondary aim of the experiment was to be

in a position to compare Phaeaco’s performance with that of human solvers

(although see chapter 4 for an important caveat regarding the conclusions drawn

from such a comparison).

3.2.1 An experiment with American college students

Subjects

The subjects were 31 students of Indiana University, at different levels in a four-

year bachelor’s program. Their educational background varied, but none was

studying for a degree in mathematics, physics, astronomy, computer science, or

chemistry, or any curriculum related to those disciplines. They had been exposed

to high school geometry at various levels of rigor. Their age ranged between 19

and 25 years.

Method

Subjects were presented with a special “Experimenter” session of Phaeaco, in

which the program presents BP’s in a predetermined order. The 12 boxes of the

problem are initially covered with a mask, and when the subject signifies they are

ready (by pressing the spacebar) the mask disappears and the BP is shown, while

a chronometer starts recording the time. As soon as the subject thinks they know

the solution of the problem they hit the spacebar, and the mask hides the 12 boxes

again, while the chronometer stops and a dialog-window pops up, prompting the

subject to type (in natural language) the rule for the left and right side. If the

subject has no answer, they may signify this by clicking on a “Give up” button.

The subject can also “Take another look” (another button on this window) at the

problem, in which case the chronometer resumes counting from where it stopped

earlier. This feature, which can be repeated any number of times, was deemed

3.2 Objectivity of the difficulty of various BP’s

51

necessary because subjects are instructed to hit the spacebar as soon as an idea for

a solution occurs to them, without attempting to express the idea linguistically

first. Sometimes the subject hits the spacebar too soon, and wishes to reconfirm

the idea before writing it down on the dialog-window, hence the need to take

another look. As soon as the subject moves on to the next problem, the overall

time spent thinking for a solution on the previous problem is recorded in a file.

The subject cannot return to work again on a not-answered (skipped) BP once the

next BP is shown. Each session lasts a full hour, and contains the first 100 BP’s,

(see Figure 3.5). Subjects try to solve as many BP’s as they can within this time.

Before starting the actual session, the subject goes through a practice run that

includes a small number of BP’s (up to five), and is designed to familiarize the

subject with BP’s and the interface. These BP’s make use of a few elementary

concepts (such as “outlined”, “filled”, “large”, “small”, etc.). The following

instructions are read to the subject when the first such BP is shown:

“What you see here is a ‘problem’ that gives you six boxes on the

left, and six boxes on the right. Each box contains a figure, or

figures, and your task is to find out why those figures on the left

have been separated from those on the right. There is some rule,

some underlying principle, by which the figures have been

separated like that, in two groups. For example, it’s rather evident

what the rule in this example is, right? [Figure 3.3] Those figures

on the left have more white than black, and those on the right have

more black than white. Correct? [all subjects invariably nodded at

this point.] As soon as you discover a rule that describes the

contents of the boxes on the left side, and none of the boxes on the

right side, you hit the spacebar. Please do so, now. [The subject

 Universality and Objectivity of BP’s

52

hits spacebar, the mask hides the problem, and the dialog-window

pops up.] On this window, you can type your answer. For instance,

here you can click on the box for the left-side rule, and type simply

“white”, or “outlined”. On the right-side box you can type “black”,

or “filled”. Sometimes the rule for the right side will be simply the

opposite of the left; in that case you can leave the right-side box

blank. Use simple English, and type only what is necessary to let

me know that you understood the rule — no full syntax is needed.”

Figure 3.3: The first BP in the familiarization session

After explaining the “Take another look” button, and moving on to the next

problem, the subject was cautioned on the following issue.

“Notice that, in the rule you come up with, you can’t make use of

the position of the box within the matrix of six boxes. For example,

3.2 Objectivity of the difficulty of various BP’s

53

you cannot say, ‘The figure at row one, column two, is such-and-

such’, or, ‘All figures of the first column are…’, and so on. Your

rule must treat all six boxes as a lump, with no particular order.”

After making sure the subject understood the above, one more subtle point

was brought to their attention.

“Now, here is another thing you cannot do with your rule. Take a

look at this problem: [Figure 3.4] You can’t say here, for example,

that there is no black on the left side, but there is some black on the

right. Your rule must be true for each individual box on the left,

and false for each individual box on the right. If you say, ‘white

only’ for this problem, your rule will be wrong, because there are

several boxes on the right with white figures only.”

Figure 3.4: A familiarization-BP for cautioning the subject on the nature of rules

 Universality and Objectivity of BP’s

54

Although all subjects agreed that they understood this last point, in the process

it was found that a few of them did not heed it. Their answers to such problems

were removed from the answer set. (Their answers to other BP’s that are immune

to this pitfall — and those are the majority — were retained, because in such

cases the pitfall seems to be irrelevant.)

Once the subject agreed they understood the instructions, the following —

very significant for the purposes of the experiment — remark was announced.

“You’ll receive a reward of 10¢ for each problem that you solve

correctly. Later I will find the number of correct answers and write

a check to you for the total amount. [It was necessary to explain

this because in an earlier pilot study some subjects thought the

reward would be fake.] Now, your task actually is to maximize

your profit. This means it is up to you to decide for how long

you’ll be thinking on each problem. Because if you think for too

long, you might end up with no time to do some easier problems

that lie ahead; while if you give up too soon, you’ll miss this

problem, which you might be able to solve if you could think for a

little longer.”

The additional element of monetary compensation was deemed necessary for

the following reason. These subjects, being enrolled in a course in psychology,

were all obliged by the Department of Psychology to participate in one

experiment of their choice during the semester. Thus, since they did not volunteer

their participation, and because the nature of this experiment required them to

think intensively for one hour, there was the danger that several of them would

simply click on “give up”, problem after problem, in order to satisfy the said

3.2 Objectivity of the difficulty of various BP’s

55

requirement. The monetary reward provided the necessary motivation for an

honest performance.

Finally, the exact sequence of BP’s used in the real session is given below.

The order of problems differs from Bongard’s original one (1–100) for two

reasons. First, as mentioned in §1.2.5, Bongard often used the idea of priming a

concept, by first introducing it in a problem and then using some variation of it in

subsequent problems. The experimental list tried to minimize priming and

concept interference, allowing relatively “pure” results to be obtained. Second, a

pilot study showed that subjects generally required a small number of problems to

“warm up” in the real session, in addition to the BP’s of the familiarization

session. For this reason, the first five problems of the real session were present

only for warming up, and their timings were discarded by the experimenter.

264 160 166 167 173 2 6 1 23 3 5 4 9 8 10
7 11 15 21 39 56 12 24 22 36 85 33 34 38 40

48 47 45 77 51 61 71 81 84 96 89 83 86 91 97
87 88 95 82 78 75 72 70 65 67 66 62 57 50 49
53 46 41 37 35 31 32 25 30 29 13 14 16 17 18
19 20 26 42 27 43 28 44 52 54 93 55 58 63 59
64 60 68 69 73 74 76 94 79 80 90 92 98 99 100

Figure 3.5: Exact sequence of BP’s tested (read by rows; first “real” BP is #2, then #6, etc.)

Results

Appendix A, which lists 200 BP’s, also gives the results of this experiment for

each problem, showing the numbers, mean times, and standard deviations for

correct answers, as well as the numbers and mean times of no answers and wrong

answers. Most subjects (17) used the entire hour and answered fewer than the 105

BP’s listed in Figure 3.5, but nearly half of the subjects (14) were fast enough to

complete the task in less than an hour.

 Universality and Objectivity of BP’s

56

Correct answers No answer Wrong answer
time (sec.) 95% conf. num. time (sec.) num. time (sec.) num.

BP #100 5 ±2 14
BP #1 7 ±2 31
BP #15 8 ±1 27 30 3 7 1
BP #95 8 ±2 30 17 1
BP #3 8 ±2 28
BP #94 8 ±2 15
BP #34 9 ±2 30 19 1
BP #23 9 ±2 30 20 1
BP #97 9 ±2 29 18 2
BP #63 10 2 15 19 1
BP #9 10 3 31
BP #25 10 3 22 5 4

Table 3.2: Easiest BP’s

In agreement with intuition, it was found that the easiest BP’s are as shown in

Table 3.2. Somewhat surprising was the position of BP #94 (Figure 3.6).

Figure 3.6: BP #94, a surprisingly fast-solved problem

3.3 Summary 57

Also surprising was the slow response time for BP #2 (Figure 1.3; “large vs.

small”): 28 subjects answered correctly with an average time of 14 sec. and a 95%

confidence interval of ±4 sec. This can probably be explained by the early

appearance of BP #2 in the experimental list, very close to the “warm up” zone.

Overall, however, there were few other surprises in the collected statistics of the

problems. The fastest-solved problem, BP #100 (Figure 2.11), shows the effect of

memory on pattern recognition (all subjects interpreted the Cyrillic letter “Б” on

the right side of this problem to be the English letter “b”). Comments on the

statistics of other problems will appear throughout the text, as their cases are

encountered.

3.3 Summary

In conclusion, the experimental observations discussed in this chapter suggest that

people, when properly questioned, show an innate, cross-cultural understanding of

basic geometric concepts. Understanding precisely the task of solving BP’s can be

mildly confusing even for American undergraduate students. Nonetheless, the

collected statistics, particularly the rather small variance in response times, imply

that there must be some fundamental cognitive mechanisms at work among those

people who do understand the task and manage to solve at least some of the

problems. This, in turn, suggests that the idea of exploring those mechanisms by

creating a program that automates the task of BP-solving is well justified.

Automation is the subject of the next chapter.

 Universality and Objectivity of BP’s

58

CHAPTER FOUR

Automation of BP-Solving
4 Automation of BP-Solving

4.1 RF4 and the problem of input representation

Few efforts have been made to explore computationally the BP domain. One

attempt that deserves special mention was outlined in a publication that described

the merits of a general-purpose search algorithm in AI, called RF4 (Saito and

Nakano, 1993). The algorithm searches a space of formulas of first-order logic by

performing “a depth-first search on the basis of five criteria for pruning

undesirable formulae and five transformation rules for combining formulae”

(ibid., from the abstract). Saito and Nakano examined a variety of domains in

which RF4 reportedly excels, and one of these domains was that of Bongard

problems. Saito and Nakano claimed that RF4, which was implemented in a

personal computer in the C programming language, “solved 41 out of 100

Bongard problems within a few seconds for each problem”. This bold statement

implicitly informs the reader that the BP domain is merely a collection of puzzles

and moreover that it has been successfully tackled by RF4. If 41 BP’s could be

solved within a few seconds, then perhaps an hour or two would suffice for all of

the others. Thus, the domain of BP’s would have been automated by 1993!

The article also provided information regarding the method by which BP’s are

encoded to be given to RF4. Each figure in a box of a BP is represented by a first-

order logic formula. So, for example, consider Figure 4.1.

 59

 Automation of BP-Solving

60

Figure 4.1: A single triangle, out of context

The triangle in Figure 4.1 could be represented by a formula similar to the

following:

polygon (X) ∧ outlined (X) ∧ angles (X) = 3

Figure 4.2: Possible representation of a triangle in RF4

It is not known whether the above formula would be the exact representation

of the triangle in Figure 4.1 for RF4, because Saito and Nakano do not provide

examples of input representation from the domain of BP’s. It is a reasonable

guess, however, because Saito and Nakano provide as an example the solution to

BP #6 (Figure 1.1), which they write as follows:

forall B in boxes, forall X in B, angles (X) = 3 → class1

In other words, if a figure X of a box B has three angles, then it belongs to

class 1 (left side of boxes of BP #6). The plausibility of the first-order formula in

Figure 4.2 is inferred from the observation that if a triangle were represented by

something as simple as angles (X) = 3, then there would be no way to distinguish

between outlined and filled triangles (hence, outlined (X)), nor between closed

and open shapes with three vertices (hence, polygon (X)).

Further elaboration of the previous argument for the plausibility of the

formula in Figure 4.2, however, reveals the problematic nature of this approach

4.1 RF4 and the problem of input representation

61

for input representation. Why should the location of the triangle within the box be

omitted? After all, the solution of BP #8 (see Appendix A) refers explicitly to the

location of a figure in relation to its containing box. Hence, the coordinates of a

center of the triangle (e.g., its “barycenter”) should be included in the formula:

barycenter (X) = p ∧ polygon (X) ∧ outlined (X) ∧ angles (X) = 3

Otherwise the representation makes the a priori assumption that the center of

the figure is irrelevant; but one cannot know what is relevant in the solution until

one solves the problem.

For similar reasons, the list of terms that describe the triangle in Figure 4.1

must grow to include the width, length, and slope of each side, the coordinates of

each of the three vertices, and possibly more. Indeed, even the fact that this is a

triangle is not known before solving the problem, as can be seen in BP #85.

Figure 4.3: The triangle of Figure 4.1 in the context of BP #85

 Automation of BP-Solving

62

In BP #85 (Figure 4.3) the box of Figure 4.1 is included as box I-B. Yet the

solution of this problem does not use the concept “triangle” at all; instead, it uses

“three lines”. On one hand, a logical formula such as the one in Figure 4.2 (or any

of the extended ones proposed above), which omits the crucial term lines (B) = 3

(where B is a box), and instead describes the input as a triangle, makes a wrong

representational assumption that would lead the system to fail to find a solution.

On the other hand, including the term lines (B) = 3 would prematurely reveal the

solution to the system.

One might argue that a good logical system with theorem-proving abilities

should be in a position to infer that there are three lines in the figure, given that

the rest of the formula describes a triangle. Though this is true for elementary

geometric structures such as triangles, the BP domain is far too complicated to

allow formal deduction of properties in general.

Figure 4.4: BP #29, where shape is irrelevant

4.1 RF4 and the problem of input representation

63

Consider BP #29 (Figure 4.4), included in Saito and Nakano’s article. The

irregular shape that encloses three circles in box I-A is too complicated to be

described accurately by logical formulas of reasonable length. Thus, a predicate

such as closed_region (X) might appear reasonable enough to be included in the

representation. This choice makes the assumption that the particular shape is

irrelevant. This is correct in BP #29, because the solution involves counting the

circles that are inside and outside the larger figure. How can one know, however,

before solving the problem, that the shape of a figure is irrelevant? Other BP’s use

shape as an integral element of their solution.

Figure 4.5: BP #20, where shape is important

In BP #20 (Figure 4.5), for example, a predicate such as closed_region (X) is

useless: the solver must perceive the “neck” and the two bulges in each figure

before noticing the placement of the two dots in relation to the two bulges. But it

 Automation of BP-Solving

64

is not possible to infer the existence of bulges in such figures from predicates such

as closed_region unless an explicit description of the curve that forms the region

is given — for example, in terms of a long sequence of predicates that describe

short pieces of straight lines that meet each other end-to-end. Thus, we end up

with two choices.

• Either the logical description is “honest”, but too long and unwieldy

for manipulation as a predicate calculus formula,

• or the logical description is short but “dishonest”, giving away some

predicate crucial for the solution. (bulges (X) = 2 would be such a

predicate in the previous example.)

Overall, the conclusion is that logical formulas are the wrong medium for

representing the input in BP’s. Such formulas require a human “helper” who,

knowing already what the solution is, uses just the right predicates for describing

the input. If we assume that such a human helper is unavailable, then the most

straightforward way to represent the input is to adopt Phaeaco’s approach (and

that of most other visual processing programs), which is to include explicitly all

the pixels that form the image (the rectangular matrix of which can be the output

of a camera, scanner, etc.), and let the program discover any features or relations

by itself, unbiased by the preprocessing of human helpers. Otherwise we have not

an automated system but a semi-automated one, in which human cognition plays

an integral role.

An additional critique of RF4 from a slightly different perspective has also

been offered by Alexandre Linhares (Linhares, 2000). In his paper, Linhares

emphasizes the importance of the ability to re-parse the input under pressure (as

in box I-B of BP #85, Figure 4.3), an ability missing entirely from RF4.

4.2 Maksimov’s combinatorial approach

4.2 Maksimov’s combinatorial approach

 65

A different approach to solving BP’s from that of RF4, at least in some respects,

was that of V. V. Maksimov, a student of Bongard’s (Maksimov, 1975). In the

early 1970’s, Maksimov used bit-mapped, black-and-white images as input to his

program, and what is most admirable is that he did so in spite of the severe

technical restrictions that were present in his computational system. The total size

of his computer’s memory was a mere 4000 64-bit words, occupied mostly by his

program, and an additional 4000 words for data manipulation. Each input box had

a resolution of 45×64 pixels. In total, his computer had 64K of memory in modern

terms — a volume available in home computers in the West by the mid-80’s.

Even with these meager computing resources, Maksimov managed to design a

system that, according to his report, matched the performance of human subjects,

at least to some degree. It is instructive that he achieved this even though, as we

shall see, the working principles in his system were far from cognitively plausible.

Figure 4.6: MP #13, three vs. two closed regions (four boxes per side)

A disclaimer must be made before proceeding: Maksimov’s system did not

solve any of the 100 BP’s in Bongard’s collection, but a set of 48 specially-

designed problems. They will be called Maksimov problems (MP’s) in this

 Automation of BP-Solving

66

section, to differentiate them from more “regular” BP’s. Each MP could have any

number of boxes on the left and right side; the usual number was six, but MP’s

with four or eight boxes per side were common (Figure 4.6). Sometimes, in order

to gauge the performance of the system, an MP was simply a repetition of the

previous MP, but with an additional box per side, retaining the solution. At other

times a quite different type of problem was included, in which a number of boxes

of unknown category were to be classified into one of two categories, which were

hinted at by only two sample boxes, given at the upper-left and upper-right corner

of the input (Figure 4.7). Maksimov called such problems “training sets”, and

their purpose was to incrementally teach the program the two categories by letting

it receive feedback from a tutor.

Figure 4.7: MP #11, a training set: “three (upper left) vs. five” (upper right)”

4.2 Maksimov’s combinatorial approach

67

Maksimov interpreted the question posed by Bongard not as, “What are the

cognitive mechanisms that underlie the solution of BP’s by people?”, but as, “Is it

possible to write a program that can perform as well as people?” Accordingly, he

employed what was considered standard AI philosophy at the time, treating every

problem of cognition as one of a search in a combinatorial space of states, and

applying various heuristics to curb the exponential growth and reach a goal state

within a reasonable time. He achieved this as follows.

S

C

F

T

Figure 4.8: Tree of descendant images, applying operators contour isolation (C), contour filling
(F), convex hull filling (T), and separation by connectedness (S)

A number of operators were applied to a given input image, resulting in a

corresponding number of descendant images (Figure 4.8). For example, given an

image with an irregular filled figure as input, one operator would create a new

image with the convex hull of the figure; another operator would find the outline

of the filled figure and create a new image with merely this outline in it; and so

 Automation of BP-Solving

68

on. Each of these new images was a descendant of the initial one. Then the

operators were applied recursively to the descendants, thus producing further

images and expanding the tree at deeper levels. There were other operators that

could extract numerical data and make binary (i.e., Boolean) decisions. For

example, one operator computed the area of a shape (the number of its pixels);

another (Boolean) operator would decide whether a shape was outlined or filled;

and so on. The search tree continued being expanded until one of the operators

resulted in a set of Boolean numbers that had the same value (e.g., true) for all

images on the left side, and the opposite value (e.g., false) for all images on the

right side.

One of the most crucial algorithms in this approach was the grouping of data

into lots. By this, Maksimov meant a procedure applied to a collection of real

numbers distributed randomly — but not uniformly — within a range, so that they

form some natural (i.e., visually discernible) groups. The procedure determines

the groups and assigns each number to a group. The algorithm proceeds by

assuming a number of groups, k, into which the data must be divided (i.e.,

assuming a value for one of the parameters that must be determined) and

computing a number κ, called the index of compactness, from k and the data. It

then tries to minimize κ by choosing different values for k, because the lowest

index of compactness turns out to be the one for which the data are “best”

grouped into lots. Since it would be computationally prohibitive to try all values

of k in order to choose the best resulting κ, the algorithm makes an ad hoc

decision, stopping at whatever κ is first found to be smaller than a pre-determined

threshold, κ*. For example, it is reported that the best value for κ* was found

experimentally to be 0.25 (for all cases of group-formation, in all MP’s).

4.2 Maksimov’s combinatorial approach

69

This procedure, which was Maksimov’s solution for the AI problem of group

formation, or classification, can itself be classified into one of the well-known

families of algorithms popular in the field of data mining (Jain, Murty et al.,

1999). 10 Such algorithms can be useful for computationally intensive grouping of

data, as is common in some engineering fields of AI, where the emphasis is on the

result, not on the method used to reach it. On the contrary, in psychology, in

which it is the method that is investigated and modeled, the criterion for

correctness is compatibility with human cognition.

Maksimov seems to claim (in the description of his system) that his approach

is psychologically plausible because there is agreement with human responses

(though we are not informed about the nature and timings of such responses).

Two factors, however, diminish the plausibility of his assertion.

First, many of his MP’s are too “machine-oriented” — that is, their solutions

are such that they can be expressed in terms of primitives available to

Maksimov’s system (e.g., “length of curved lines”) or are reachable by tree-search

(e.g., “the length of the contour of the convex hull”, as in MP’s #23 and #24), but

hardly appear natural to people.

Second, Maksimov’s program operated by selective “brain surgery”: because

there were severe restrictions on the amount of data that could be present at a

given time in memory, some pieces of code that were deemed irrelevant for

certain MP’s were removed when the program was set to work on those MP’s —

or else the program and the data could not be present simultaneously in memory.

The trouble is, however, that when a human operator determines which pieces of

code will or will not be used in a given problem, the system becomes semi- rather

10 The use of a threshold suggests that Maksimov’s algorithm is a variant of the k-neighborhood
algorithm (see Jain, Murty et al., 1999).

 Automation of BP-Solving

70

than fully automated. It is unknown what the system’s performance would be if

the program were present in its entirety at all times, and were left to operate on its

own devices.

In summary, although Maksimov’s program constitutes the most thorough and

sincere computational effort made so far in the domain of Bongard problems, it

falls far short of proposing an adequate, and — most important — cognitively

interesting approach.

4.3 How is Phaeaco’s approach different?

Unlike Maksimov’s system, Phaeaco uses the original BP’s as input (plus those

designed later by Hofstadter and the author, all listed in Appendix A). And, unlike

RF4, Phaeaco uses black-and-white pixels as the form in which input is encoded.

Each BP in Phaeaco’s input consists of 12 boxes, presorted into two groups (left

and right), and each box has a resolution of 100 × 100 pixels. Phaeaco “looks” at

the pixels in the 12 boxes, initially in parallel, and then concentrates increasingly

on particular boxes, according to the visual patterns perceived in them. The details

of Phaeaco’s processing of input will be explained in chapter 10.

Some readers might object to the idea that examining black-and-white pixels

at a resolution of 100 × 100 constitutes “image-processing” in any significant

sense.11 Such readers would require true-color photographs as input before

applying the label “image-processing” to algorithms.

The answer to this concern is twofold. First, Phaeaco is not limited to black-

and-white pixels. It can accept true-color photographs as input, in which case it

applies traditional contrast-enhancement and edge-detection filtering methods to

11 Many thanks to Katy Börner (personal communication) for raising this issue.

4.3 How is Phaeaco’s approach different?

71

convert the input to a black-and-white representation (more in §10.1). And

second, even with a resolution of 100 × 100 (although Phaeaco is by no means

limited by this value) there is plenty of room for ambiguity in the input. Even

though individual pixels have sharply defined values (0 or 1), collections of pixels

are almost never sharply defined as objects. For example, when is a hand-drawn

collection of pixels a piece of a straight line, and not part of a curve? When is a

polygon a circle, and a rectangle a square? Is a hand-drawn scanned figure really

open, or should it be perceived as closed in the context of other similarly hand-

drawn closed figures? To answer these questions, and many more, Phaeaco does

not employ crystal-clear definitions, but relies on context. All these potential

sources of ambiguity, together with a non-rigid way of looking at the input, make

it much easier to claim that Phaeaco performs not simply traditional image-

processing, but cognitively interesting processing of the input, starting at a very

low (raw) level.

Image-processing is not Phaeaco’s focus, however, but only a means of

ensuring that the input is not formalized and preprocessed, as is the case with

systems such as RF4. Phaeaco proceeds beyond image-processing, to visual

pattern-formation, storage of patterns in LTM, priming of related patterns through

a mechanism of spreading activation (not unlike mechanisms in artificial neural

networks), pattern-matching, and recall from LTM. This is the “cognitive

processing” of Phaeaco, in which there is no tree-like search in a combinatorially

growing space. Visual patterns, for example, grow to some extent due to the

action of small pieces of code, called codelets, that act on patterns and compete

against each other, vying for computing time. These characteristics have been

borrowed from the Copycat family of architectures (Hofstadter, 1995a; Marshall,

 Automation of BP-Solving 72

1999; Mitchell, 1993; Rehling, 2001) — of which Phaeaco is another member —

and will be explained in more detail in §6.2.

Thus, processing in Phaeaco occurs at two levels that interact with each other.

The first, or “retinal”, level, is more akin to the processing of visual input in the

retina and visual cortex, although it does not attempt to model those brain

modules at the neurophysiological level. The second, or “cognitive”, level, comes

closer to modeling human psychological processing, and is the level at which a

scheme of conceptual representation is employed. The two levels interact and

influence each other, working in parallel. The retinal level starts working first,

since it processes the raw (pixel-based) visual input. The cognitive level begins as

soon as possible, in a pipelined fashion, and can modify certain parameters that

modulate the functioning of the retinal level. This top-down (cognitive-to-retinal)

flow of information is limited, however; the bulk of information-flow occurs in

the bottom-up direction (retinal-to-cognitive).

“Mind”

Neurons Bit-strings of memory
General data structures

Phaeaco’s retinal level
Phaeaco’s cognitive level

Neuronal columns
Retina & visual cortex

Visual patterns

Biological
Cognition

“Programmed”
 Cognition

Figure 4.9: Expectation of convergence between biological and “programmed” cognition

4.3 How is Phaeaco’s approach different?

73

The reason for distinguishing between retinal (lower) and cognitive (higher)

levels of organization is that biological and “programmed” cognition12 operate on

different hardware components. The former uses neurons as its lowest-level

hardware building blocks, and the latter uses bit-strings of memory (Figure 4.9).

Some designers of cognitive systems (connectionists) simulate neurons through

bit-strings. In Phaeaco, neurons are considered to be inappropriate targets of

simulation. Instead, biological and programmed hardware components are seen as

initially independent; but through successive levels of abstraction in each case,

they take on almost identical functions. The similarity increases in proportion

with the degree of abstraction. Eventually, it is hoped that at the highest level of

abstraction, we reach what we experience as a “mind”.

Thus, the answer to the question “What does Phaeaco model?” can be found

by looking at the intersection of cognitive and programmed cognition in Figure

4.9: Phaeaco models some fundamental cognitive processes, and the number of

human-like cognitive behaviors is expected to be larger as we move higher up in

the abstraction hierarchy toward a fully developed “mind” (the shared area in

Figure 4.9 is larger at the cognitive than at the retinal level).

12 The term “programmed cognition” refers to any attempt to implement models of human
cognition in computers. The expression “artificial intelligence” is avoided here because the term
“AI” has acquired distinctly engineering and even science-fiction connotations in recent years,
distancing it from the goal of understanding how the mind works.

74 Automation of BP-Solving

4.4 What should be the goal of automation?

Given the earlier attempts at automating the BP-solving process, a question that

naturally arises is, “How should one compare various approaches?” Since the

question involves comparisons of multidimensional systems, there can be no

simple answer. The following subsections examine various dimensions of BP-

solving systems and the corresponding space and “metrics” that arise from them.

4.4.1 Number of BP’s solved vs. degree of automation
Is it correct to look exclusively at the number of BP’s solved by some system in

order to form an opinion on how good, or satisfying, the approach is? It might

seem that the answer to this question is subjective, and that it all depends on how

one defines a “good” or “satisfying” approach. However, to make it clear that the

idea of looking only at the number of BP’s solved (as a percentage of the original

100, for example) is not a good metric of “goodness”, consider the following

extreme case.

Imagine a “program” that consists of an array of 100 strings, the n-th string of

which contains the solution of the n-th BP (in plain English) in Bongard’s original

collection. Given one of the 100 BP’s as input, the problem is first encoded as a

number (by a human helper), and the number is then given to the “program”,

which outputs the n-th string.

What is wrong with this approach? An immediate concern is that it is not

productive: it can solve only those BP’s that are already stored in its table. But an

extension to this approach can have the human helper adding strings to the table

as each new BP appears, and since it is up to this helper to decide a number given

4.4 What should be the goal of automation?

75

the BP, every BP that has been seen at least once can be solved in any of its future

appearances.

Thus there is no problem with the productivity of this approach, but there is a

problem with its automation. The problem is that the human helper, not the

program, solves the BP. As an automation method, this would be absolutely

unacceptable, but it serves to remind us that simply counting the BP’s solved is an

unacceptable metric of the “goodness” of an approach. It may be of some use to

consider the number of solved oblems, but the degree of automation

(independence from human help) in ystem must also be considered.

4

haeaco

N0

A
ut

om
at

io
n

1

Human

Figure 4.10: Graph of numb

The graph in Figure 4.10 depi

“degree of automation”. Phaeaco ha

relatively small number of solved

but with high automation value.13 R

low automation value, since a huma

logic formulas. The cases of a hum

1×1000 array are also shown at the

13 This value is not exactly maximum bec
a camera to look at a BP, so some human h
a format that Phaeaco can read; alternative
editor.
 pr

 a s

RF

P

 um. of solved BP’s 100

1x100 array

er of solved BP’s vs. degree of automation

cts the space of “number of solved BP’s” vs.

s been placed on this space somewhere with a

BP’s (at its current stage of implementation),

F4 is also shown, with 43 solved BP’s and a

n helper must convert the BP’s into first-order

an being and the trivial “program” with the

 extremities. Maksimov’s system is not shown,

ause Phaeaco’s current implementation does not include
elper has to scan the BP first and create an image file in
ly, a BP can be created directly using Phaeaco’s bitmap

 Automation of BP-Solving

76

since it is not known to have solved any of the 100 BP’s, but if it were depicted

on the graph, its automation value would be comparable to Phaeaco’s.

4.4.2 Agreement with data vs. interest in cognitive science
At least two more dimensions of automated approaches are interesting. One is

how closely the behavior of a system agrees with measurements of human

behavior. Maksimov, for example, claimed a significant degree of agreement

between his system and data collected from human subjects, although he did not

quantify this agreement. But even a system having 100% agreement with human

behavior is not necessarily cognitively interesting. An example of this case — not

from the BP domain — is Deep Blue, the computer chess program that, in 1997,

became the first program ever to defeat in a match the reigning world chess

champion (Hsu, 2002). Though Deep Blue’s performance was such that it could

possibly pass a chess-restricted “imitation game”,14 its approach for achieving its

goal (which was simply to defeat the world chess champion) was to employ state-

of-the-art heuristics for searching and pruning the exponentially growing tree of

chess moves, and even more to rely on very fast computing hardware. Thus, Deep

Blue made no attempt to model any aspect of human cognition.15 From a

cognitive science perspective, the only lesson learned from Deep Blue’s victory

14 This is the term Turing used for what became known as “Turing Test”. Since the Turing Test is
by its definition unrestricted, one might consider an “imitation game” restricted in the domain of
chess, where a human judge tries to understand whether the chess-playing opponent is human.
This is an excerpt from Hsu’s book: “Somehow, all the work caused Grandmaster Joel Benjamin
[…] to say, ‘You know, sometimes Deep Blue plays chess.’ Joel could no longer distinguish with
certainty Deep Blue’s moves from the moves played by the top Grandmasters.” (Hsu, 2002).
15 Hsu writes in the preface of his book, “We approached the problem [of computer chess] from a
different direction. We, or at least I, viewed the problem as a purely engineering one. […] Our
project began with a simple goal, namely, to find out whether a massive increase in hardware
speed would be sufficient to ‘solve’ the Computer Chess Problem.” (Hsu, 2002).

4.4 What should be the goal of automation?

77

against the world chess champion was that there are alternative (non-cognitive)

computational ways to emulate some aspects of cognition.

If we were to construct a graph with two axes, “agreement with human

behavior” vs. “cognitive interest”, and plot the locations of Phaeaco and Deep

Blue, we would arguably obtain something like the graph in Figure 4.11.

Phaeaco

Agreement with human behavior
10

C
og

. i
nt

er
es

t

1

Human

Deep Blue

Figure 4.11: Graph of agreement with human behavior vs. cognitive interest

Note that the estimate of “agreement with human behavior” for Deep Blue in

Figure 4.11 is based on expert opinion (Hsu, 2002, see also the footnotes on the

previous page). Less sophisticated judges might express an even stronger

conviction that there is human intelligence behind Deep Blue’s performance.

In conclusion, just as examining a person’s ability in a single skill is usually

considered inadequate as an assessment of a person’s overall intelligence, so a

single measurement along any of the dimensions discussed above is inappropriate

as an estimate of the success of a BP-solving approach. Nonetheless, analogously

to the single value obtained by an IQ test for a person, one can envisage using

some ordinary metric in a multi-dimensional space to compute a “distance from

human” as a single-valued estimate of the “goodness” of an automated approach.

 Automation of BP-Solving

78

PART II: Phaeaco

 79

 80

CHAPTER FIVE

Phaeaco in Action
5 Phaeaco in Action

Phaeaco’s external appearance and behavior when asked to solve BP’s is

presented in this chapter. The captured images of the program show not merely

Bongard problems but Phaeaco’s entire interface after some processing has

occurred; in addition, the solution to the problem has been printed at the bottom

of the screen. It should be noted that the resolution of the input that Phaeaco

processes is exactly as shown in the various BP’s printed throughout chapters 1–

4, in which the individual pixels are easily discernible, and not as shown in the

figures of the present chapter, in which the dimensions of BP’s are reduced to

make room for the display of the program’s entire interface.

5.1 What Phaeaco can do

In the subsections that follow, the BP’s that Phaeaco’s current implementation can

solve are grouped into categories, according to the deeper issues that the

architecture must manage. The way these issues are handled is explained in

subsequent chapters. This chapter provides a general preview only.

5.1.1 Feature value distinction
The solutions of an estimated 44% of all BP’s are based on distinguishing

between the values that some feature has on the left and right sides. For example,

 81

 Phaeaco in Action

82

the feature could be the size (area) of an object, and the distinction between

values could be “large vs. small” (as in BP #2).

The problem that Phaeaco solves faster than any other is BP #3 (shown in full

resolution in Figure 1.2), which has a solution based on a discrete-valued feature.

Figure 5.1: Phaeaco’s appearance after having solved BP #3

Figure 5.1 shows Phaeaco’s interface after having solved BP #3. The answer

reached by the program is printed at the bottom of the left and right pages

(“outlined texture” and “filled texture”). The time, in seconds, taken to solve this

BP is shown at the rightmost corner of the display (“00:03”). Because such times

are largely dependent on the speed of the computer, only relative evaluations of

5.1 What Phaeaco can do

83

them are meaningful. Phaeaco solved BP #3 on 98% of its attempts, as compared

with 28 human subjects, all of whom solved the problem, with an average time of

7.9 seconds and a standard deviation of 6.1 seconds.

The marks on the vertices and along the sides of objects in Figure 5.1 are the

result of animating the progress of some retinal-level processes, and will be

explained in chapter 10. The number at the bottom-left corner of each box (“270”)

is the value of an internal clock-cycle counter, roughly corresponding to the time

spent looking at the box. Other features of this interface will be discussed later in

this chapter (§5.2).

In attempting to solve a BP, Phaeaco first goes through a “holistic stage”,

during which all 12 boxes of the input are examined simultaneously, devoting

equal time to each box. BP #3 is one of a few problems that Phaeaco manages to

solve without going into the next, “analytic” stage, in which attention shifts to

individual boxes. (The details of the functioning of the holistic and analytic stages

are given in §11.1.) Phaeaco reaches the solution by forming two visual patterns

(§1.2.3), one for each side of the problem, and contrasting the two patterns in

search of differences. In the case of BP #3, the pattern on the left almost always

has the value “outlined” assigned to its feature “texture”; similarly, the pattern on

the right has almost always a “filled” texture. The algorithm that contrasts the two

patterns spots this difference immediately (due to a built-in high significance of

the percept of texture16), and this signals the end of the solution-seeking process.

The formation of an overall pattern for each side of the BP out of individual

patterns for each of the six boxes is discussed in §11.1.2.

16 This property is inspired by, but does not simulate, the ability of the human brain to spot
contrast in colors immediately through color-specializing area V4 of the visual cortex (Zeki,
1993).

 Phaeaco in Action

84

Figure 5.2: Phaeaco after having solved BP #2

When the feature values come from a continuous range, as in the case of

“area” in BP #2 (Figure 5.2), Phaeaco compares the statistics of the values on the

left against the statistics of the values on the right. For example, in BP #2, the

areas of the six figures on the left side form a sample of size six that has a mean

and a standard deviation. This sample, which is part of the left-side pattern, is

compared statistically with the corresponding sample of the right-side pattern. If,

through the use of well-known statistical methods, the two statistics are found to

differ significantly, this gives a “subcognitive hint” to Phaeaco that the solution

might be based on different areas. Phaeaco then verifies this idea by quickly

5.1 What Phaeaco can do

85

looking at each box and confirming that each figure on the left is larger than the

largest figure on the right. Other problems solved in this manner are BP #8 and

BP #11 (see Appendix A).

BP’s with solutions based on numerosity (§1.2.1, and §7.3) are also solved by

Phaeaco. One of the most straightforward is shown in Figure 5.3.

Figure 5.3: BP #23 as solved by Phaeaco

BP #23 is simple enough to be solved by Phaeaco by contrasting the

numerosity of objects between the left- and right-side patterns. Other problems,

however, such as BP #85 (mentioned in §4.1; see Figure 4.3), are more subtle.

 Phaeaco in Action

86

Figure 5.4: Difference in numerosity of lines in BP #85

The pattern that Phaeaco constructs on the left side of BP #85 (Figure 5.4) is

not precisely “three lines”. The reason is that only one box (I-A) depicts precisely

three lines. Other boxes depict some structures (in particular, one of them is a

triangle), and thus Phaeaco does not construct a pattern which is as simple as

“three lines” for the left side, but rather one that can be described as “object with

some lines”, for five of the boxes; a similar description can be made for the right

side. The program must spend additional time looking at the boxes individually

(this is the analytic stage, mentioned above) before hitting upon the idea of

differing numerosity of lines. Luckily, due to the simplicity of the input, this idea

5.1 What Phaeaco can do

87

usually appears very soon; in fact, it fails to appear in only 6% of attempts, as

shown in the performance statistics in Appendix A. Interestingly, 10% of the

subjects (3 out of 30) that attempted to solve BP #85 also failed to solve it.

5.1.2 Existence
BP #1 (Figure 5.5) is probably the simplest BP regarding existence, solved by

100% of human subjects and 100% of Phaeaco’s attempts.

Figure 5.5: BP #1, the simplest problem of existence

Phaeaco spends nearly no time at all looking at the empty boxes of the left

side of BP #1, and constructs an overall pattern for the left side that contains

 Phaeaco in Action

88

nothing but a “box”. The pattern of the right side, however, contains the notion

“object”, together with its numerosity (approximately equal to the average

number of objects in a right-side box). Comparing these two patterns, Phaeaco

immediately identifies the existence of a representational element that stands for

“object” in the right-side pattern, and its absence in the left-side pattern.

Figure 5.6 shows BP #5, another problem solved by Phaeaco, the solution of

which is based on the existence of curves (on the right side).

Figure 5.6: Existence of curves on the right side of BP #5

5.1 What Phaeaco can do

89

5.1.3 Imaginary percepts
Not all percepts that are necessary for the solution of BP’s are always present

explicitly in the input. One such example is the percept of the “convex hull” of a

figure, which is the central idea in the solution of BP #4.

Figure 5.7: BP #4, “convex vs. concave”

In BP #4 (Figure 5.7), the left-side figures have no indentations (they are

“convex”), whereas the right-side figures have at least one indentation (they are

“concave”). One way to detect the existence of indentations is to imagine an

elastic band enclosing the figure tightly. The elastic band forms a convex shape,

the “convex hull” of the figure. The “difference” between the convex hull and the

actual figure (i.e., those points that belong to the convex hull but not to the figure)

reveals precisely the indentations of the figure.

 Phaeaco in Action

90

Phaeaco has the ability to “imagine” the convex hull of a figure, and then to

consider what remains if the figure is “subtracted” from the convex hull.

Although imagining the convex hull is one of Phaeaco’s “primitives” (in the sense

that it does not depend on anything more fundamental), the operation itself is not

performed immediately upon seeing a figure, nor is it at all certain that it will ever

be performed. Perceiving the convex hull is a rather infrequent operation, and for

this reason Phaeaco has a low success rate while attempting to solve BP #4

(20%). The success rate for human subjects is slightly lower, only 16%.

Figure 5.8: BP #4, as solved by Phaeaco

5.1 What Phaeaco can do

91

Note, however, that whenever close matches between Phaeaco and human

subjects are reported, either in success rates or in relative response times, they are

not meant to support the claim that human cognition is based on an architecture

similar to that of Phaeaco’s. Instead, close matches should be seen exactly for

what they are: indications of the presence of human-like behavior on the part of

Phaeaco.

Other perceptual elements that Phaeaco is in a position to “imagine” are

straight-line segments and curves formed by the centers of small objects, and the

interior of closed curves or polygons, which determine the solution of BP #15.

Figure 5.9: BP #15, as solved by Phaeaco

 Phaeaco in Action

92

Interestingly, in its attempt to solve BP #15 (Figure 5.9), Phaeaco “imagines”

a circle in box II-C, where only an incomplete circle exists. Similarly, in box II-B

Phaeaco makes a very good match of the figure with the known pattern of a

triangle, after extending the incomplete side and finding that it meets the endpoint

of another side, thus completing the triangle. In spite of being able to construct

imaginary closed figures, such as circles and triangles, Phaeaco is not distracted

by them, noticing the existence of true closed regions only on the left, and their

lack on the right.

5.1.4 Equality in a single box

Figure 5.10: BP #56, as solved by Phaeaco

5.1 What Phaeaco can do

93

The solution of some BP’s is based on a relation among features of objects that

holds within each single box; though the features might differ from box to box,

the relation remains the same across all boxes of a given side. An example of such

a problem is BP #56 (Figure 5.10), for which the solution is that all objects within

each box on the left are of the same texture. The texture can be sometimes

“filled”, sometimes “outlined”, but whatever it happens to be, it is the same for all

objects in a given box. On the right this is never the case.

This class of problems can be thought of as having solutions that are “one

notch higher” in abstraction than all types of solutions we have seen so far. It is

one idea to notice that “feature X of all objects in a box has the same specific

value” (which can also be a legitimate BP), and another one to notice that “feature

X of all objects in a box has the same value, whatever that is”. Though on the

surface the difference appears to be a minor one, the representation that needs to

be built for Phaeaco to arrive at the latter, more abstract description, is quite

different from the much simpler representation that suffices for the former type of

solutions, as we shall see in §7.4.10.

Phaeaco does not solve BP #56 with ease, succeeding in only 20% of its

attempts, failing to give an answer in another 64%, and giving a wrong answer in

the remaining 16%. Human subjects, however, perform quite well on this

problem, as seen in Figure 5.10: the percentage of successes is 71%, failures to

answer are 16%, and wrong answers are 13%. This is a case where Phaeaco’s

scores of success and failure deviate substantially from those of human subjects.

In truth, Phaeaco’s 20% of successes can be improved substantially by some

technical adjustments. Closer examination of Phaeaco’s behavior shows that the

correct answer (“every object has similar texture”) is reached in many more

attempts; but Phaeaco often fails to verify that it is true in all boxes on the left and

 Phaeaco in Action

94

false in all boxes on the right. If even one of the 12 boxes does not pass the

verification stage, the solution is rejected and a different one is sought. Phaeaco’s

vision sometimes is not as acute as necessary to see precisely what there is in each

box, all the time. Since the disagreement with human performance became

evident only after the experiment with human subjects was administered, no a

posteriori corrective action was taken to make Phaeaco’s performance match the

human one better.

Figure 5.11: BP #39, as solved by Phaeaco

Figure 5.11, as well as Figure 5.12, shows problems of the “same kind” as BP

#56. In BP #39 the feature that keeps approximately the same value across all

5.1 What Phaeaco can do

95

objects (line segments, in this case) in each box is slope; in BP #22, it is the area

of objects (approximately equal, of course, since slope and area are continuous-

valued features). These two problems are landmark cases in Phaeaco’s

development because their solutions were reached “for free”, i.e., after Phaeaco

becoming sophisticated enough to solve BP #56, it could solve BP’s #39 and #22

without a single line of code having to be added.

Figure 5.12: BP #22, as solved by Phaeaco

This is important, because ideally this situation should be repeated often. As

the system becomes more robust, adding programming lines to deal with a

specific problem should result in the solution of a number of other problems that

 Phaeaco in Action

96

have solutions with similar characteristics. Eventually, a time should come when

Phaeaco’s programmer adds the last line of code in the implementation, and

Phaeaco becomes capable of solving every BP that is also solvable by humans.

Could this ever be true? This is an interesting philosophical question. If it were

not true, then there would always be some BP’s that are solvable by people but

that lie forever beyond Phaeaco’s cognitive horizon. Unless we are willing to

assume that the human mind possesses some “magic” property that can never be

programmed, the answer to the previous question must be affirmative: a time

must come when the last added piece of programming code endows Phaeaco with

just as much fluidity, abstraction ability, and creativity in coming up with an

answer as the best of human minds.

Nonetheless, situations such as this one (i.e., an enhancement in Phaeaco’s

architecture resulting in BP’s getting solved “for free”) must be exceedingly rare

in Bongard’s collection of 100 problems. Certainly the case described above was

the only one observed in the present implementation. The reason is that Bongard,

being a good problem-designer, did not often repeat himself. He preferred to

apply each abstract concept — such as “all objects have the same value for some

feature” — in no more than two or three problems, frequently moving on to

explore different ideas.17 Yet, no matter how creative a designer is, there must be

an end to creative ideas that can be expressed in 12 black-and-white, 100×100

boxes. Under these restrictions, the set of possible BP’s is vast, but finite. And

experience in BP-design shows that with more than 300 BP’s collected from

various sources,18 ideas do start being repeated. In a rough, educated guess, a set

of 10,000 BP’s could include the ideas of all but the most creative designers.

17 This is true to an even higher degree in Hofstadter’s collection of 56 BP’s.
18 Mailed to the author by BP-enthusiasts through the internet.

5.1 What Phaeaco can do

97

5.1.5 Reading the small print
All the previous subsections described successive architectural enhancements that

were implemented in Phaeaco in order to cope with increasingly complex issues.

This subsection describes a technical enhancement without which even some of

the already presented BP’s would remain unsolvable.

The enhancement pertains to Phaeaco’s visual perception of small objects.

According to conventional wisdom in traditional image processing, if an object

appears large (i.e., many pixels make up its image), it requires more processing,

because there is more information that must be processed before a program can

form an “opinion” on what it represents. This in turn entails more opportunities

for a traditional program to be “lost in the details” of a large image, and arrive at

the wrong conclusion. Smaller objects typically are easier to process. In Phaeaco,

the opposite is true. Not all pixels of a large object need be explicitly processed,

as will be explained in §10.3 before Phaeaco can “sense” what the object looks

like (i.e., before it matches it to a known object). Thus, in Phaeaco, “smaller”

rather than “larger” implies “harder to perceive”, because the coarseness of

resolution at very small sizes yields ambiguities. Consider Figure 5.13.

Figure 5.13: Left of arrow: two small objects. Right of arrow: their actual pixels magnified

 Phaeaco in Action

98

Figure 5.13 shows on the left two small objects, a circle and a triangle, taken

from the box of a BP. The right side of the same figure shows the magnified

pixels of these two objects. While looking at the small objects, the human eye

manages to fill in the missing pixels and to smooth the lines; as a result, the circle

looks to us like a circle — it would not be confused with a polygon, for example.

But when we look at the actual pixels on the right, we see what the program sees:

the circle now could be construed as a polygon (a heptagon, perhaps), and the

imperfections of the triangle appear exaggerated. If the two shapes were larger,

the imperfections of their lines would average out; but at this resolution they

could cause some confusion for the image-processing algorithms.

For such objects, Phaeaco has the equivalent of a “magnifying glass”: a set of

algorithms that magnify the objects by adding pixels appropriately, so that their

imperfections are smoothed out. The following figure shows the result.

Figure 5.14: Result of algorithmic magnification (b) and actual pixels (c)

In Figure 5.14, the original small objects (a) are magnified and smoothed at

the same time (b); the actual pixels of (b) are shown more clearly in (c). We see

that now the pixels are more numerous than those of the objects in Figure 5.13,

and the contours appear smoother not only to the human eye, but objectively (to

the program). Any magnification size is possible by the algorithm that achieves

5.1 What Phaeaco can do

99

this result, as will be explained in detail in §10.3.17, but in practice a factor of two

works well in most cases. In the same section, it will be explained that Phaeaco

does not have a sharp but rather a probabilistic threshold for areas below which

objects are considered “small”: there is a gray region of area values in which there

is some probability that Phaeaco will apply the magnification algorithm. The

chances diminish sharply for larger objects, and increase sharply for smaller ones.

Figure 5.15 shows a problem in which applying the magnification algorithm is

essential for Phaeaco’s success. Small objects on which the magnification

algorithm has been applied are depicted enclosed in a faint gray circle.

Figure 5.15: BP #21, as is usually solved by Phaeaco

 Phaeaco in Action

100

The expected way to express the solution of this problem is: “There is at least

one small object in each box on the left, whereas on the right there is never a

small object.” Phaeaco indeed reaches this solution in its internal representation,

but its way of expressing it linguistically is not very sophisticated. Thus, what we

read on the left is “object has small area”, vs. “object has large area” on the right

— a phrasing that can be confused with solutions to problems such as BP #2

(Figure 5.2). Phaeaco notes that there is a contrast in areas among objects within

the same box, for some box on the left side (this is true for five out of six boxes).

This activates the notions “area”, “small”, and “large” (among others) in its LTM,

which makes it easy to come up with the idea “Let’s see if there are small objects

only on the left side”. (Equally probable is that Phaeaco will examine the idea

“Let’s see if there are large objects only on the left side”, but rejects it as soon as

it looks into a box on the right and sees the first large object.) After verifying the

idea on both sides, it announces the solution mentioned above. Phaeaco arrives at

this solution 34% of the time.

Interestingly, in another 4% of its efforts, Phaeaco arrives at a different

solution for BP #21, which Phaeaco’s designer was unaware of before the first

time it was discovered: it prints the cryptic sentence “every object has a fixed

area” on the right side, and nothing on the left (Figure 5.16). This was at first

taken to be a spurious wrong answer. But upon closer examination it was

understood that Phaeaco acts as follows. It is first attracted by the overall

“uniformity” of areas of objects on the right side, in a holistic way. We get this

holistic impression if we mentally remove the borders of the six boxes on the

right, and see merely the objects spread over the right side of BP #21. At a low,

retinal level, it is the statistical variance of the population of areas on the right

that Phaeaco’s routines compute. But at a higher, cognitive level, Phaeaco does

5.1 What Phaeaco can do

101

not know about variance, but about the idea that these objects all look similar in

terms of their areas; it also notices that the objects on the left do not look similar

to each other. This leads Phaeaco to the notion that every object on the right has

approximately the same specific area. If we were to compute the values of those

areas, we would see them ranging between 500 and 600 pixels. Phaeaco does not

have access to such numbers at its cognitive level, but it knows the areas are close

to some fixed value (whatever that is); and that is what it announces as a solution.

Figure 5.16: BP #21, as occasionally solved by Phaeaco

 Phaeaco in Action

102

Human subjects’ success rate with BP #21 is different from Phaeaco’s: they

succeed 65% of the time, give a wrong answer 29% of the time, and no answer

6% of the time.

This example underlines the importance of the separation of levels in

Phaeaco’s architecture. Numbers such as statistical variance and the specific value

of an area are dealt with at the lower, retinal level. The higher, cognitive level

benefits from the calculability and existence of such numbers, but has no access to

them. If Phaeaco were ever to become a conscious system, it would be able to talk

about the rough uniformity of a feature without knowing that at a lower level it

has computed the statistical variance of a sample.

5.2 Phaeaco’s Mentor

Besides the BP-solving division in Phaeaco’s interface, which was presented in all

figures in §5.1, there is also the “Mentor division”, accessible through the vertical

tab labeled “Mentor” (it appears on the right side of the book pages in all previous

figures, and on the left side in Figure 5.17). In this part of the interface the person

who interacts with Phaeaco (call this person “the mentor” for the purposes of this

section) can teach Phaeaco visual patterns beyond those that appear in BP’s, and

also to associate linguistic descriptions with percepts.

As a demonstration of the usefulness — and the necessity — of including the

Mentor division, consider again BP #6 (Figure 1.1). If the LTM lacks the concepts

“triangle” and “quadrilateral” (as Phaeaco’s LTM in its initial configuration at

start-up indeed does), then the only way to approximate the solution to this BP is

by noticing the number of sides in each shape (three on the left, four on the right),

5.2 Phaeaco’s Mentor

103

or even the number of vertices.19 But there must be some way to let the system

know that, for example, “that kind of figure” is called a “triangle”.

Figure 5.17: The Mentor section of Phaeaco’s interface

This is precisely the purpose of the Mentor division. There is a large visual

box on the left page, in which the mentor can draw anything at all. Note that

although the “tools” of the tool-bar buttons (top of figure) allow only black-and-

19 Interestingly, of the 26 subjects who solved this problem, only 10 used the concept “triangle”.
“Three sides” was used 13 times, “three vertices” twice (expressed as “corners” or “points”), and
one subject used the combination “3 points, 3 sides” vs. “4 points, 4 sides”. Only two subjects
used the description “quadrangle” for the right side; of the rest, those who saw triangles on the
left, saw either four-sided objects on the right, or “no triangles”.

 Phaeaco in Action

104

white drawings, it is possible to open and load a true photograph stored in a file,

and Phaeaco is able in principle to process that, too, in ways that will be explained

in §10.1. Underneath the visual box, there is a “phrase box”, in which the mentor

can type a phrase, preferably about the drawing in the visual box. Figure 5.18

shows an example.

Figure 5.18: A figure drawn and a phrase typed in Mentor’s boxes

The phrase can be missing altogether, but if given, it is better that it is related

to the contents of the visual box (unless the mentor intends to confuse Phaeaco, or

force it to learn associations between percepts and words in some unexpected

way). Next, the mentor can ask Phaeaco to process the input (drawing and/or

5.2 Phaeaco’s Mentor

105

phrase), by clicking on the button showing a running figure, on the right pane.

Phaeaco will take less than a second (in a typical computer) to look at the input,

and will end up producing something similar to what is shown in Figure 5.19.

Figure 5.19: Phaeaco’s markers of visual processing are superimposed over the drawing

At this stage, Phaeaco has done the following: it has created an internal

representation of the drawing, the nature of which will be explained in chapter 7;

it has possibly updated or started creating the visual patterns of a circle and a

parallelogram in LTM, in ways that will be explained in chapter 8; and if a phrase

has been supplied, then Phaeaco has attempted to segment it into morphemes, and

made some associations between the percepts of the drawing and the morphemes

 Phaeaco in Action

106

of the phrase. The nature of the linguistic processing that must be undertaken by

Phaeaco is entirely beyond the scope of the present text, and constitutes a system

that rivals in complexity Phaeaco’s visual architecture. However, the linguistic

system is not complete yet; it is a work in progress that will be described in future

publications. At present, suffice it to say that Phaeaco can learn the correct

associations between words and percepts after being supplied with several

examples that repeatedly make use of the same words (but in different phrases) in

the presence of the same percepts. For example, after the previous sample pair of

[image, phrase], another pair might show a triangle inside a circle, and the phrase

might be: “Now a triangle is inside a circle”.

The mentor can add pages to the Mentor division, placing each [image,

phrase] pair on a separate page, thus constructing a “lesson”, i.e., a sequence of

such pairs. Lessons can be saved and re-learned (replayed) at a later time, which

allows the mentor to control the order and quantity of concepts learned by

Phaeaco before attempting to solve various BP’s. (For example, the mentor might

want to teach the concepts “triangle” and “quadrilateral” before letting Phaeaco

look at BP #6.)

The effectiveness of the algorithm that allows Phaeaco to learn associations

between words and percepts has been empirically verified, but its correctness has

not yet been formally proven, so its introduction must await future publications.

5.3 Summary

Some of the BP’s that Phaeaco can solve were presented, and their properties

were discussed, along with other features of the interface of the program. The

next chapter introduces the foundations of Phaeaco’s architecture.

CHAPTER SIX

Foundational Concepts
6 Foundational Concepts

The following sections offer an exposition of the foundational background on

conceptual representation, paving the way for Phaeaco’s architectural

organization (to be discussed in next chapter) and explaining its position within

this theoretical background. The “classical”, “prototype”, and “exemplar” theories

of concepts are discussed, followed by the Fluid Analogies Research Group

(FARG) ideas about how concepts should be represented. FARG principles are

directly incorporated in Phaeaco’s architecture, whose approach to the

representation of concepts can be seen as an amalgam of the prototype and

exemplar theories (in spite of their alleged conflict).

6.1 Theories of concepts

6.1.1 The classical theory of concepts
“What are concepts?” is a question that was first asked at least 2,300 years ago.

Early answers given by the Greeks are not considered satisfactory today, but they

must be mentioned in any discussion of conceptual theories: we must absorb the

mistakes of the past to avoid them in the future.

Though Plato is famous for advancing the view of a realm of abstract and pure

ideas that exists separately from ordinary perception (the “Theory of Forms”), and

for his insistence on definitions in many of his dialogues — most notably in

 107

 Foundational Concepts

108

Sophist (Plato, 1992) — it was Aristotle who first took up the question of what a

category, or concept,20 is. According to Aristotle, a category is what it is because

it possesses a set of defining characteristics (Aristotle, 1992). For every category

there is an essence that makes it “what it is to be” (τό τί ƒν εqναι). Essences are

definitions21 that are based on a number of elementary categories. Aristotle

specified ten such elementary categories, which are akin to conceptual primitives

in modern theories of conceptual representation, and he gave examples for each.

Table 6.1 lists Aristotle’s elementary categories (Frede, 1981).

Elementary category
(conceptual primitive) Description Aristotle’s examples
Substance (οšσία,

τόδε τι,
τί dστί)

substance
“this”
what-it-is

human, horse
Socrates
“Socrates is a human”

Quantity (ποσόν) how much four-foot, five-foot
Quality (ποιόν) what sort white, literate
Relation (πρός τί) related to what double, half, greater
Location (πο™) where in the Lyceum, at the marketplace
Time (πότε) when yesterday, last year
Position (κεsσθαι) being situated lies, sits
Habit (hχειν) habit, possession is shod, is armed
Action (ποιεsν) doing cuts, burns
Passion (πάσχειν) undergoing is cut, is burned

Table 6.1: Aristotle’s elementary categories

Moreover, Aristotelian definitions are not concerned with individuals but

rather species (εqδος, one of the words Plato uses for “Form”) that have essences.

A species is defined by giving its genus (γένος) and its differentia (διαφορά). The

genus is a larger set in which the species belongs, and the differentia is what

20 The words “category” and “concept” will be used interchangeably in this chapter.
21 Aristotle himself traced the quest for definitions back to Socrates.

6.1 Theories of concepts

109

distinguishes the species from other members of the same genus. Thus, a “human”

might be defined as “an animal (the genus) having the capacity to reason (the

differentia)”.

Although Platonic and Aristotelian definitions and the theory of essences were

held as immutable and authoritative theories of human cognition for well over two

millennia, challenges to them began already with their contemporaries.22 Most

notable among those with critical attitudes were the Stoic philosophers, though

very few of their writings have survived.

What is more important than philosophical objections, however, is the fact

that the classical theory of concepts does not withstand experimental evidence

that argues against it. A fundamental claim of the classical theory is that a

definition sharply separates those items that belong to the defined concept from

those that do not. A study by J. A. Hampton, asking subjects to rate items on

whether they belonged to certain categories, showed that, after computing the

statistical averages over all subjects, some items were just barely considered

category members, while other items were just barely excluded (Hampton, 1979).

For example, tomatoes were just barely excluded from “vegetables”, while

seaweed was just barely included. Similarly, sinks were just barely included as

members of the category “kitchen utensil”, while sponges were just barely

excluded. Seven out of eight categories investigated displayed continuity between

purported members and non-members, rather than a sharp division among items.

It might be objected that although statistical averages present a continuum,

individual people have a very clear idea of which items belong to which category.

But an earlier study (McCloskey and Glucksberg, 1978) showed that people can

22 Diogenes Laertius (3rd C. AD) recounts one such anecdotal objection: the Cynic philosopher
Diogenes of Sinope (4th C. BCE), upon hearing Plato’s definition of “human” as a featherless,
bipedal animal, plucked a chicken and announced, “Here is Plato’s human.” (Diogenes, 1992)

 Foundational Concepts

110

change their mind about category membership in ambiguous cases when asked to

repeat their judgment after a period of only two weeks.

The objection to the existence of crisp boundaries between members and non-

members is closely related to the issue of typicality among category members. For

example, although dolphins and bats are mammals, they are rarely among the first

ones people recall when asked to produce a list of mammals (Barsalou, 1987;

Rosch, 1975). Moreover, response times for deciding whether such atypical items

belong to a category or not are longer than for the more typical members (Murphy

and Brownell, 1985; Rips, Shoben et al., 1973). In addition to being unable to

explain the effects of typicality, the classical theory is plagued with other

problems. For example, it predicts that the subset relation among categories

should be transitive: if horses are a kind of mammal, and mammals are a kind of

animal, then horses are a kind of animal. In reality, however, human cognition

does not always work in a mathematically describable way. One experiment, for

instance, found that subjects regarded chairs as furniture, and car seats as chairs,

but usually denied that car seats are furniture (Hampton, 1982).

To address problems such as the ones mentioned above, researchers have

proposed ways to mend the classical theory. One such way is to distinguish

between core and identification procedures (Miller and Johnson-Laird, 1976).

The core procedures (not to be confused with the term “conceptual core” as used

by FARG, to be introduced in §6.2) are still definition-like mechanisms (which

remain elusive, since no one has said exactly what they are). In addition, however,

there is supplementary information that people store with each concept that serves

to identify instances of the concept. Thus, although having fur is not a definitional

(core) property of the concept “mammal” (humans have no fur, and there are

some furry insects), most mammals have fur, and an animal with fur is quite

6.1 Theories of concepts

111

likely a mammal. A number of such characteristic features aid concept

identification, according to this view.

Nonetheless, such remedies to the classical theory are problematic. If only the

identification procedures can be examined experimentally, what then is the role of

the core ones? What is the purpose of insisting on definitions if an objective way

cannot be established to render definitions unassailable, except possibly in

contrived23 cases? After all, changing the classical theory so that it acquires

features of its rivals and looks more like them would undermine the reason for

keeping it as a possibility.

6.1.2 The prototype theory of concepts
Strong objections to the classical theory and its inability to explain experimental

results led to the development of the prototype theory of concepts, largely

associated with Eleanor Rosch (Rosch, 1973; Rosch, 1975; Rosch, 1977; Rosch,

1978; Rosch and Mervis, 1975), which was soon followed by the exemplar theory

(to be discussed in §6.1.3). According to a review by G. L. Murphy (Murphy,

2002), the prototype theory was at first misinterpreted, taken to mean that the

prototype of a category is the “best example” of all members of the category.

Thus, the category “bird” would be represented by the best, or the most typical

example of a bird. It could be a robin for North Americans, a sparrow for

Europeans, etc. This, however, was a deviation from the original proposal, but it

persisted, partly because Rosch did not explicitly rule it out in her seminal

publications.

23 “Even number” has been proposed as a concept with which people are faster in deciding that 4
is a more typical even number than, say, 7356, but may use the well-known definition to decide
correctly with 100% accuracy if given sufficient time (Armstrong, Gleitman et al., 1983).

 Foundational Concepts

112

According to the prototype theory a concept is represented by a set (or list) of

features, some of which are assigned greater weights than others. The more often

a feature appears in the category and does not appear in other categories the

higher its weight is. For example, in the category “bird” the feature “has feathers”

will be assigned a very high weight, but the features “has wings” and “has beak”

will be given lower weights, because there are other entities that have wings or

beaks but are not birds. In addition, features with high variability (e.g., “bird

color”) will have low weight, because they are only mildly informative. But what

is the value of a seemingly discrete but utterly unspecifiable feature such as “bird

color”? (What is the color of a parrot of the kind Ara macao, a bird that includes

all hues of the rainbow on its head, body, and tail feathers?)

Features with a continuous range present an additional problem: how are

continuous values to be stored? For example, what is the length of a bird? One

possibility is to discretize the range (e.g., small, medium, and large), although this

introduces an element of arbitrariness. Another possibility is to store the exact

value from a continuous range (e.g., 27 cm), but then how can two values be

compared to determine whether they are close enough? This results inevitably in

another arbitrary decision. Early proposals, such as storing the average value if

the variability of the feature were small (e.g., “length of robin”), but not if it were

large (e.g., “length of bird”) (Strauss, 1979), were not widely used or accepted.

Another significant problem is the categorization of new items. Specifically,

given an item and a category, how do we decide whether the item should be a

member? Here there seems to be some consensus, assuming at least that both the

item and the category prototype come equipped with a feature list. The algorithm

gives points for every common feature among the two lists according to the

weight of the feature, and subtracts points for every feature of the item that is not

6.1 Theories of concepts

113

in the list of the prototype, and for every prototype feature that is not in the

feature list of the item (Smith and Osherson, 1984; Tversky, 1977). If the total

value thus computed exceeds a fixed threshold (called the categorization

criterion), then the item is judged to be a member of the category. Problems with

this approach include the arbitrariness of the categorization criterion, and what to

do with unknown feature values: does a given bird seen frontally have no tail, or

is its tail hidden by its body? Is a feature with an unknown value subtracted from

the total sum, or simply ignored?

The feature list of a prototype has been criticized as an unstructured, and thus

uninformative, data structure (Smith and Osherson, 1984). A bird, for example, is

not simply a collection of parts, such as two legs, a head, a body, two eyes, a tail,

and a beak, all in a disorganized list. Each part bears a certain relation to other

parts: putting the eyes on the body will make a rather poor example of a bird. To

rectify this representational weakness, the idea of schemata was introduced

(Markman, 1999; Rumelhart and Ortony, 1977; Smith and Osherson, 1984). A

schema divides up the features of an item into dimensions, also known as “slots”,

and values on those dimensions (“fillers”). Slots are typed: a slot of type “color”,

for example, cannot receive a value of type “length”. Values can be mutually

exclusive: an eagle cannot be both female and male. There can be restrictions on

values (up to two eyes is fine for a bird, but three or more is not a possibility), and

in some cases values can restrict other values (a bird with wings too short for its

body size cannot possibly have the feature “can fly”). Finally, and more

important, relations can be explicitly stored in slots: the eyes of a prototypical bird

are expected to be above the beak, the head is smaller than the body, etc.

Now consider how the prototype theory addresses the objections raised

against the classical theory of concepts.

 Foundational Concepts

114

• In the prototype theory there is no need for a defining characteristic, since

the computed sum total of a number of characteristics with weights is

compared against a threshold value. This rectifies the inability of the

classical theory to find a single defining characteristic (a definition).

• The observed continuity in membership (the lack of a sharp divide

between members and non-members) is explained by the corresponding

continuity of the computed sum total that determines membership.

• Borderline membership cases are explained as items that receive

approximately equal scores when tested against two different and rival

categories (e.g., a tomato as either fruit or vegetable).

• The observation that people often change their minds on borderline cases

of category membership can be explained by hypothesizing that people

use slightly different weights each time, or a different threshold, or even

slightly different features.

• Typical items are identified as members more quickly because they

contain the most highly weighted features, so they receive high scores.

This rests on the assumption that it is easier to discern a difference

between two numbers (when comparing the score against the threshold)

when the difference is large than when it is small (§7.3).

• Finally, intransitivity can also be explained, to some extent, by the

prototype theory. For example, car seats are kinds of chairs by virtue of

one set of features (which includes “can be used for sitting”), but chairs

are a kind of furniture by virtue of another set of features (which includes

“is located in a room”). Car seats are therefore not a kind of furniture

because the two feature lists do not match sufficiently (Tversky, 1977).

6.1 Theories of concepts

115

6.1.3 The exemplar theory of concepts
Shortly after the prototype theory of concepts was first proposed, an alternative

proposal was made, in which the claim was that what is stored in memory is not a

summary representation, but a collection of the individual examples that belong to

the category (Medin and Schaffer, 1978). This proposal, termed “the exemplar

theory of concepts”, appeared to be radically different and counterintuitive: the

concept “dog”, for example, in a person’s mind consists of a few hundred dogs

the person has seen, some more salient than others.

This immediately raises the issue of how category assignment is made. For

example, how do we decide that a flying object that just perched on a branch of a

tree in the Eastern United States is a member of the category “goldfinch”?

According to the exemplar theory, the input is compared with all concepts stored

in memory. The comparison is performed in parallel, hence the result is known

practically immediately. The input will thus activate most strongly the stored

examples of goldfinches (assuming we already have such examples stored in

memory), because those are most similar to the given input. It will also activate,

but to a lesser degree, examples of orioles, chickadees, warblers, robins, canaries,

and possibly several other similar-looking birds, depending on the observer’s

prior knowledge. The activation of each of these examples also depends on their

salience: a goldfinch is more similar to a canary than it is to a robin, but canaries

would be rather low in salience, since they do not normally fly and perch in places

where goldfinches do. The input will also activate, probably in decreasing order

of strength, examples of sparrows, cardinals, pigeons, chickens, ostriches,

chameleons, and so on. Eventually, examples of goldfinches, if most highly

activated, will result in accessing the concept “goldfinch” consciously, whereas

all other concepts will be primed only subconsciously. Nonetheless, clever

 Foundational Concepts

116

psychological experiments reveal that even such unlikely concepts as “ostrich”

and “chameleon” can still receive more activation than other concepts, such as

“cathedral” and “democracy”, that share no features with “goldfinch”.

Evidently, there must be a mechanism for comparing the input to stored

examples, resulting in a value of similarity. Medin and Schaffer proposed a

multiplicative rule, according to which each pair of compared features results in a

value in the range between 0 and 1, but never exactly 0, and these values are

multiplied together, resulting in a final similarity value. Each such value is

weighted, however, with a weight that brings the value closer to 1 if the feature is

insignificant, thus diminishing its effect. For example, in comparing two trees for

similarity, it is more important to notice the difference in the shape of their leaves

than the difference in their heights, since the feature “leaf shape” is more

characteristic of the type of tree than the variable height feature. Thus, the tree-

height difference will be multiplied by a weight that will bring it close to 1,

effectively neutralizing it.

This gives a procedure for computing the similarity between two items. But

how do we compare the input to an entire set of examples in a category? Medin

and Schaffer suggested that the similarity scores of the input against each example

in memory must be summed up. Thus, if the input is a goldfinch and there are 100

examples of cardinals stored in memory, the 100 similarities of the input to each

of the cardinals must be added to yield a final similarity value of the input to the

category “cardinal”. Even if there are only very few stored examples of

goldfinches, their high similarity value will suffice to categorize the input as

“goldfinch”, because the cardinals, though many, will differ considerably from

the input item, and hence their overall similarity will yield a lower value. If

several categories turn out to be similar to the input, each category will be

6.1 Theories of concepts

117

selected with a probability that is proportional to the amount of similarity it has

relative to the others (Nosofsky, 1984).

Though counterintuitive, the exemplar theory answers satisfactorily — at least

according to its proponents — the issues raised by the prototype theory in

questioning the validity of the classical theory. Specifically, the answers to

objections are as follows:

• The problem of defining characteristics vanishes in the exemplar theory,

since there are no definitions, but only comparisons between examples.

• Typicality is easily explained: the most typical items are the ones that are

similar to many category members.

• Borderline cases are explained as items that are almost equally similar to

category members and category non-members.

• Typical items are categorized faster than atypical ones: it is easier to find

evidence that they are members, since they are similar to a larger number

of category members (Lamberts, 1995; Nosofsky and Palmeri, 1997).

• Intransitivity is explained in a way similar to that of the prototype theory:

a car seat is similar to many examples of chairs one has seen before; a

chair is similar to examples of furniture in many aspects; but car seats are

not as similar to examples of furniture in as many aspects.

For all the experimental support it has received, some aspects of the exemplar

theory remain unsatisfactory. As the previous discussion suggests, the theory tells

us how to proceed once some examples are “stored” and a new input arrives. But

how are the examples stored? The prototype theory makes specific, if crude,

suggestions: a list of features, a structured schema, etc. Exemplar theorists have

left the question of representation blurred and unanswered (Murphy, 2002). What

 Foundational Concepts

118

exactly is stored when, for example, we see a sparrow? Is it the visual image of a

specific vantage point taken from a particular angle, a collection of such images,

or an entire “motion picture” that includes the sparrow as it turns and pecks on the

ground? What if we receive only a fleeting view of the sparrow, or if we see it

through the window of a moving car — does it still count as an example, and, if

so, how salient an example is it? If we have seen thousands of sparrows in our

lives, do they all count as examples? If it makes some sense to claim that the

category “dog” is formed by all the specific examples of dogs we have seen

(because dog-kinds can be quite different from each other, and we can imagine

storing them separately), how much sense does it make to claim that the category

“ant” is formed by all the examples of ants we have seen? How can objects as

indistinguishable as two ants be stored separately? And how can the mind cope

with the amount of information it receives if it stores separately every input object

it ever perceives? There have been various attempts at answering these questions,

but no overall consensus has yet emerged.

6.1.4 The Generalized Context Model
Over the years, some cognitive psychologists have developed a more

sophisticated set of formulas for computing the similarity of two exemplars than

the initial multiplicative rule suggested by Medin and Schaffer. These formulas,

collectively known as the Generalized Context Model (GCM), are empirical in

that they have been tested experimentally and are known to be accurate within

statistical error (Kruschke, 1992; Nosofsky, 1992; Nosofsky and Palmeri, 1997).

Although the GCM has been employed primarily by exemplar theorists, there is

no reason why it should not be employed by alternative representational

approaches. Indeed, Phaeaco employs the GCM, explained in detail below.

Notwithstanding its grand title, the GCM consists of three simple formulas.

6.1 Theories of concepts

119

First, the following formula gives the psychological distance dij between two

exemplars i and j that can be compared along features xi1,…, xin, and xj1,…, xjn.

r
n

k

r

jkikkij xxwd ∑
=

−=
1

Equation 6.1: Distance evaluation in GCM

The wk are weights that depend on the “context”; in other words, these

weights determine the importance of each feature xk. In Phaeaco, each wk can be

in the range from 0 to 1, and r equals 1 (which turns Equation 6.1 into an n-

dimensional weighted “Manhattan distance” — see §8.2.1 and §8.2.3).

Next, the similarity sij between exemplars i and j is given by the formula:

ijdc
ij es ⋅−=

Equation 6.2: Similarity evaluation in GCM

Thus, the greater the distance dij, the smaller the similarity sij. Regarding the

parameter c, a high value results in paying attention only to very close similarity,

and a low value has the opposite effect. Equation 6.2 is also employed by Phaeaco

(§8.2.5).

For the sake of completeness, it should be mentioned that the GCM uses a

third formula that calculates the probability P(J | i) that exemplar i will be placed

into category J:

()

= ∑∑∑

∈∈ K Kk
ik

Jj
ij ssiJP |

Equation 6.3: Membership probability in GCM

 Foundational Concepts

120

K ranges over all possible categories. Phaeaco does not use Equation 6.3, but a

different statistical computation, to be explained in chapter 8.

Does the human brain implement the three GCM equations in a literal way, by

evaluating summations and exponentials? In principle, such functions are within

the capabilities of neuronal processing, as is known in the area of natural

computation. It is also possible, however, that the above formulas are emergent

results of deeper underlying mechanisms. As an analogy, planets move along

nearly perfect elliptic orbits not because they solve differential equations, but

because such orbits are emergent properties of gravitational fields: they are 3-D

projections of “straight lines” (geodesics) in curved 4-D space-time. Like Kepler

in the 17th century, psychologists offer no deeper justification for Equations 6.1–

6.3 than agreement with experimental evidence.

6.1.5 Controversy over the correctness of the two theories
Ever since the appearance of the prototype and exemplar theories as heirs to the

more or less obsolete classical view, theorists of each of the two new views

assumed an antagonistic attitude toward each other. After all, the two theories

appear to be totally at odds regarding the explanation for how concepts are

formed: the prototype theory supports a summary representation disregarding the

specifics, while the exemplar view proposes storing only the specifics. If one

theory is right, the other has to be wrong. Countless papers have been published

supporting one view, and thereby attacking, at least implicitly, the other. The

pattern is that an author performs some experiment, and interprets the results to

favor one view. Some time later a new publication appears from the “enemy

camp” offering an alternative interpretation of the original results that supports

the opposite theory. Consequently, each camp withdraws more deeply into its

trenches, and the possibility of a reconciling synthesis becomes ever more remote.

6.1 Theories of concepts

121

In spite of the ongoing controversy, the approach taken in Phaeaco adopts a

middle ground. But how can there be middle ground between two theories so

seemingly contradictory of one another? To answer this question, we should note

the fact that it is very difficult — if not downright impossible — to distinguish

experimentally among the two opposing theories. Consider the analogy suggested

by the following figure.

Figure 6.1: Abstraction of the prototype (left) and exemplar (right) representations

The drawing on the left side of Figure 6.1 is an abstract representation of a

way the prototype theory could represent categories: through a statistic that

includes a mean value and a variance.24 The drawing is two-dimensional, hence

this category contains only two dimensions (features). In general, however, the

drawing should be imagined in n dimensions. There is a core (dark area) around

the mean value, where most members of the category exist, and a halo of

progressively25 lighter regions, corresponding to areas where fewer members

exist. In short, this is merely a schematic representation of a Gaussian in two

24 Note that some prototype theorists consider mean values, but generally not variances.
25 The shades are supposed to vary smoothly, but the printing of the figure discretizes the range.

 Foundational Concepts

122

dimensions. On the right side of Figure 6.1, the exact same category is depicted,

but this time through the individual members (dots) that belong to it. It is not hard

to see that most questions that can be answered by the first representation can also

be answered by the second, and vice versa. In particular, the mean and variance

can be calculated from the individual members in the exemplar case, so the

second representation subsumes the first.26 But the prototype representation can

also answer most questions, such as, “What is the probability of finding a member

at a given distance from the center?” or, “What is the expected number of

members up to a given distance away from the center?” The only questions that

are unanswerable by the prototype representation are those that concern individual

examples.

As was mentioned at the beginning of this chapter, Phaeaco employs an

amalgam of the two paradigms. Phaeaco’s representations are primarily

prototype-like, with a core and a halo, as will be explained in more detail in

chapter 8. But they also include some individual examples, particularly those that

appeared earliest in the formation of the category. This means that the first

examples of a category are remembered explicitly, at least for a while, during

which time they form a statistic (with a mean, a variance, and a few more

important parameters). As the statistic becomes more robust, the probability of

storing individual examples diminishes. Eventually, no more examples are stored,

but the statistic is updated with each new example that is encountered. The

following figure gives an abstract depiction of this idea.

26 Naturally so, since the exemplar view is a “lossless” representation in the simplified drawing of

(although in reality, exemplar theorists do include effects of memory loss due to
forgetting). On the other hand, the prototype representation is “compressed”.
Figure 6.1

6.1 Theories of concepts

123

Figure 6.2: Abstraction of Phaeaco’s conceptual representation

The justification for this approach is that, although memorization of individual

examples cannot be denied, particularly when such examples represent a new

concept or idea, Phaeaco has no alternative to compressing its representations

sooner or later, because as a non-distributed system it does not have the luxury of

employing a scheme in which successive inputs are all maintained independently.

In addition, since Phaeaco is implemented and run on processors that are not

inherently parallel, it does not have the luxury of running through a large number

of explicitly stored cases in order to compute statistical summaries when needed.

All this is ultimately a consequence of the difference in the underlying hardware

between biological and programmed architectures of cognition, as already

discussed in §4.3, and illustrated in Figure 4.9.

6.2 The FARG principles of conceptual representation

At around the same time the first papers appeared proposing the prototype and

exemplar views, Douglas R. Hofstadter was working on GEB (1979) (see §1.1).

In chapter XIX of GEB, immediately after the introduction of BP’s, Hofstadter

 Foundatio ncepts

124

drew igure of wha he called “a sm n of a pt netw drawn

below Figure 6.3.

t

high

low d
 a f

 in

righ

left

circle

square

Figure 6.3: A small portion of a concept

all por

opposite

similar
3
t

4

tio

posed com
of

nt

n

le

r
line
e

ygo

“is-a”

segm

pol

network, from GEB (Hofstadter, 19
nal C

ork”,

ter

has
feature

in
o

 re

io
r

exterio
 conce

up

own

triang

closed
curve
79, p. 652)

6.2 The FARG principles of conceptual representation

125

Each node in the network of Figure 6.3 represents a concept, or, more

precisely, the core of a concept (a notion that will be explained later). Thus, the

node labeled “triangle” represents not a specific triangle that was seen at any

particular time, but the core of the abstract (“Platonic”) concept “triangle”. The

concept network is part of the long-term memory of a cognitive system.

Some nodes are linked to other nodes with a directed link. For example,

“square” is linked to “line segment” with a link that points to the latter. At some

point along the length of this link there is a black dot, from which another directed

link starts and points to the node “composed of”. Figure 6.4 extracts and shows

this portion of the network.

composed
of

line
segment

square

Figure 6.4: An even smaller portion of the network of Figure 6.3

In such cases nodes like “square” can be seen as subjects of a sentence, of

which “composed of” is part of the verb, and “line segment” is the object. The

entire sentence reads, “a square is composed of line segments”. Many such

sentences can be inferred from the small network of Figure 6.3: “a circle is a

closed curve”; “a square is a polygon”; “a closed curve has interior as a feature”;

and so on. (It should be noted that a simple linguistic component that produces

such sentences given similar representations is included in Phaeaco.)

 Foundational Concepts

126

Other nodes are linked together through a bi-directional link; for example,

nodes “low” and “down”, which are “similar”, as shown in Figure 6.5. In such

cases the concepts are symmetrically related, and the sentence can be constructed

in either direction: “low is similar to down”, and “down is similar to low”; or

even, “low and down are similar”.

low down

similar

Figure 6.5: A bi-directional link denoting a symmetric relation

Other interesting features of the concept network in Figure 6.3 include some

degree of self-reference (“similar and opposite are opposites”), and representation

of higher-order relations (“the opposites right–left and high–low are similar”).

In GEB, Hofstadter hinted at how these conceptual relations could facilitate

the solution of BP’s by an automated system. In particular, he introduced the

important notion of a conceptual slippage between concepts that are sufficiently

close in the network. For example, consider BP #24 (Figure 6.6). Suppose that, in

solving this problem, at some point we reach the idea that on the right side there

are many shapes with line segments. Unfortunately “shapes with line segments” is

not enough for reaching the solution, because there are many such shapes on the

left side, too. But the concept “line segment” is close to “curve” in the concept

network, because the two are “opposites”. A momentary look on the left side of

BP #24 is enough to let us identify not simply curves, but circles, and the

concepts “curve” and “circle” are also close to each other in the network (“a circle

is composed of a curve”). Thus, the initial idea of line segments slipped into the

6.2 The FARG principles of conceptual representation

127

neighboring idea of curves, and then to circles, the existence of which is the

solution of BP #24.

Figure 6.6: BP #24, one of many where a slippage facilitates its solution

These ideas were developed further by Hofstadter and the Fluid Analogies

Research Group (FARG), and explained in Fluid Concepts and Creative

Analogies (henceforth FCCA) (Hofstadter, 1995a). An outline of pp. 211–224

from FCCA follows, since the described architectural principles of the Copycat

program have largely been adopted in Phaeaco, too.

6.2.1 Copycat and its Slipnet
Copycat was a project conceived by Hofstadter, and as an implemented program

it formed the focus of Melanie Mitchell’s Ph.D. thesis (Mitchell, 1990; Mitchell,

1993). It was developed further in a second Ph.D. thesis under the name of

Metacat (Marshall, 1999). The object in Copycat (and Metacat) is to discover

 Foundational Concepts

128

analogies in a letter-string domain. The following is a typical problem of this

type.

Suppose the string abc were changed to abd; how would the string

ijk be changed in “the same way”?

Though seemingly simple, problems in this domain can be surprisingly subtle. For

example, the above problem admits several answers:

• ijl: the most natural answer, replacing k by its successor l, just as c was

replaced by its successor d.

• ijd: rigidly replacing the rightmost letter by d.

• ijk: rigidly replacing all c’s by d’s.

• abd: replacing the whole string without regard to its internal structure by

abd.

A wealth of other, much more interesting letter-analogy problems led to the

development of Copycat’s architecture, which was characterized by fluidity in the

way various ideas about relations among letters and groups of letters were tested,

rejected, re-formulated by slipping into related ones, tested again, and so on. One

key component of Copycat’s architecture was the Slipnet, a network of Platonic

concepts similar to the one shown in Figure 6.3, but this time employing concepts

from the domain of letter-string analogies.

A fundamental idea in FARG’s Slipnet is that each node can be activated

when the corresponding concept in the input is encountered. Activation is a

continuous quantity that can spread from a node to neighboring nodes, and in like

manner to further ones, but at each jump from one node to another it loses some

of its vigor, until — after typically a very small number of jumps — it reaches no

6.2 The FARG principles of conceptual representation

129

further. Consequently, the conceptual core of a concept is defined as the node

from which activation starts spreading to neighboring nodes. All affected

neighboring nodes belong to the halo of the concept. This implies that a concept

in Slipnet is not a single node, but an entire — not sharply delineated —

collection of nodes, one of which serves as its core.

An additional attribute of the Slipnet makes the behavior of concepts and their

activations even more attractive. The links that connect nodes with each other are

not passive and featureless “cables” that merely pass activations along. Each link

has a label, which is itself a concept in the network (as shown in Figure 6.4, for

example). When the label of a link receives activation, the link can be imagined as

“shrinking” in a manner determined by the degree of activation value. The notion

of “shrinking” is only a visual analogy, and is illustrated in Figure 6.7.

node 1 node 1node 2 node 2

“label” node node “label”

BEFORE ACTIVATION AFTER ACTIVATION

Figure 6.7: Illustration of figurative “shrinking” of a link due to activation of its “label”

As a result of this “shrinking”, two nodes that are connected with each other

through such a shortened link can be thought of as “coming together”, which

makes it easier for activation to pass from either one to the other (from “node 1”

to “node 2” in Figure 6.7).

For a more concrete example, suppose “interior” is connected with “exterior”

by an “opposite” link, as in Figure 6.3. Suppose also that “opposite” receives

 Foundational Concepts

130

some activation. Then the nodes “interior” and “exterior” come closer to each

other, and their greater proximity makes it easier to slip from the notion of

“interior” to that of “exterior”, and vice versa. At the same time, it becomes easier

to slip between all sorts of opposite concepts, such as “high” and “low”, or “up”

and “down”, or “similar” and “opposite”, etc. Thus, the Slipnet resembles a

rubbery structure that shrinks, bends, or is otherwise distorted.

Activations of nodes do not last forever. They fade over time, but the speed

with which they fade depends on another parameter of each concept, its

conceptual depth. The greater the depth of a concept, the more slowly its

activation fades. Conceptual depth correlates, but does not coincide, with the

abstractness of the concept. For example, “similar” is conceptually deeper than

“to the left of ”, and “polygon” is deeper than “triangle”. The reason for the

correlation of conceptual depth with the tendency to retain activation is that

abstract ideas are remembered best, whereas surface-level, specific memories are

easily forgotten.

6.2.2 The Workspace
If the Slipnet corresponds to the long-term memory of human (or animal)

cognition, the Workspace corresponds to its short-term memory. According to

Hofstadter, the Workspace resembles a busy construction site,27 in which all sorts

of structures are continually being built and partially destroyed, to make room for

new, possibly larger, stronger, more complex ones. The construction takes place

independently at many places, and initially there are only disconnected and very

27 The visual analogy here is that of “the cytoplasm of a cell, in which enzymes carrying out
diverse tasks all throughout the cell’s cytoplasm are the construction crews, and the structures
built up are all sorts of hierarchically-structured biomolecules.” (Hofstadter, 1995a).

6.2 The FARG principles of conceptual representation

131

simple structures. Over time,28 however, these simple structures are connected to

form larger ones. The initial low-level, bottom-up parallelism is gradually

replaced by a higher-level, top-down, focused elaboration of only those structures

that appear to be the most salient.

How is an object’s salience determined? It is a function of two other factors:

the object’s importance and its unhappiness. The importance depends on how

highly activated the nodes that belong to the structure are; and the unhappiness is

greater if the object is poorly integrated with other objects. To illustrate, consider

a chessboard with pieces in the middle of a game. Some pieces are more

important than others, by virtue of participating in the player’s most promising

plans. But the player’s attention is also diverted from time to time to those pieces

that wait “unhappily” away from the action, precisely because they seem

abandoned, and the player wonders whether they could be utilized in some other

important plans.29

6.2.3 Coderack, codelets, and temperature
If structures are built in the Workspace, what is it that builds them? What is the

equivalent of a team of workers that expand the edifice by adding parts to it?

The team of workers is implemented by the Coderack and its codelets. But the

worker-analogy is not completely accurate, since the activities of construction

workers generally proceed according to a centrally designed plan (the architect’s

blueprint), and because real workers usually build solely by construction, rather

than by demolition. None of these properties is true in a FARG architecture.

28 But note that this time interval, in a cognitive system functioning in real time, might last only
fractions of a second.
29 Interestingly, Alexandre Linhares is currently involved in the design of precisely this kind of
chess-playing architecture that employs most of FARG’s principles (Linhares, 2005).

 Foundational Concepts

132

Specifically, there is no pre-designed plan that must be followed. If any “plan”

can be discerned after some amount of activity, it is an emergent one, an

epiphenomenon for which no specific prior decision was taken.

The codelets are tiny procedural blocks (they can be thought of as very short

pieces of programming code) that wait on the Coderack. The latter is a structure

that serves only for accessing and selecting the next codelet to run. Each codelet

has an urgency, which is a number determining how likely the codelet is to be

selected probabilistically from the Coderack: the higher the urgency, the better the

chances are for the codelet to be selected. A codelet’s urgency is assigned by its

creator as a function of the estimated promise of the task the codelet will work on.

Once selected, a codelet performs single-mindedly the only task it “knows” how

to perform and then it dies. Though codelets are usually implemented in serial

computers, thus allowing only a single one of them to act at any moment, their

probabilistic selection from the Coderack and their very short life span makes

their collective behavior appear as if large numbers of them acted independently

and in parallel.

There are bottom-up and top-down codelets. The former act directly on

structures in the Workspace without any prior information about what should

exist there. Top-down codelets, in contrast, carry out actions on Workspace

structures with an eye to creating specific types of higher-level structures. Before

a codelet dies and is removed from the Coderack, it can manufacture follow-up

codelets, which, like all codelets, are placed on the Coderack and wait there until

selected to run.

In Copycat there is another architectural component that is not implemented in

Phaeaco’s architecture. It is the temperature of the system. The temperature is a

measure of disorder in the Workspace. The system starts at high temperature (low

6.2 The FARG principles of conceptual representation

133

order), at a stage in which hardly any structure has been built, and therefore most

codelets are of the bottom-up kind. As time goes by, however, structures are

created, and the temperature of the system drops (order increases). The notion of

temperature is important in Copycat because its value provides a measure of how

much the system “likes” an answer. By its nature, Copycat’s domain allows a

number of different answers to be given to each problem, with some answers

being more “desirable” than others, and much of the system’s creativity and

similarity to human cognition rests on its sense of which answers are more

felicitous than others. In contrast, the BP domain does not lend itself to the same

cognitive pressure: BP’s usually have a single answer, and if some shapes admit

multiple descriptions, Phaeaco manages to reach them without having an explicit

measure of their desirability. Naturally, the omission of temperature from

Phaeaco’s present implementation is not being trumpeted as an advantageous

feature; it simply seems that at this stage it is not critically needed. If the

architecture of Phaeaco were to be applied to a domain such as letter-string

analogies, temperature would have to be added to it.

 Foundational Concepts

134

CHAPTER SEVEN

Workspace Representations
7 Workspace Representations

An implementation of the ideas of conceptual representation discussed in the

previous chapter is given in the present one. In addition, properties that pertain

solely to Phaeaco’s representations are explained. The discussion starts with the

way the representation of a very simple visual object (a Λ-like shape) forms in the

Workspace (§6.2.2) — namely, the formation of a graph-like structure of

interconnected nodes. It continues by examining the activation that each node

possesses, which is an essential element of Phaeaco’s representations. One of the

representational elements, numerosity, is examined in some detail because of its

importance both to human cognition in general and to BP’s in particular. The rest

of the chapter discusses the types of representational elements used in Phaeaco in

its current implementation.

7.1 Formation of Workspace representations

The formation of representations of the visual input in the Workspace, which is

explained in this section, assumes an LTM that contains only some “hardwired”

(preprogrammed) primitives, including such Platonic notions as “point”, “line

segment”, etc. The simplifying assumption that more complex concepts (such as

“triangle”) are initially absent from the LTM implies that structures are formed in

the Workspace with no top-down pressures, built by codelets with no expectations

about what should exist in the input. More complex issues of contextual

 135

 Workspace Representations

136

influences on the formation of representations in the Workspace are discussed in

the next chapter.

Suppose the following Λ-like shape is given in a single box of a BP, as shown

in Figure 7.1. (Initially, only a very simple figure like this is considered, because

the depiction of the representation of any more complex figure would exceed the

space available on a single page.) An explanation of the lower-level image

processing that occurs in Phaeaco’s “retinal level” (a term introduced in §4.3) is

postponed until chapter 10. At present, we assume that some initial processing

takes place at the pixel level, which in some way gives rise to the higher

“cognitive” structures that will be introduced in the present chapter.

Figure 7.1: A simple input figure (from BP #30)

The representations that Phaeaco builds when asked to process the same input

at different times are not necessarily identical. But if the input is as simple and

decontextualized as the one shown in Figure 7.1, then the representations will

always be nearly identical. In general, however, the more complex the input and

the contextual pressures, the higher the probability that some variance will exist in

the internal representations of multiple views of the same input. This is the case

because the processes that build up the representational structure are probabilistic

at a very low level (even at the pixel level, as will be explained in the chapter 10).

Thus, the points, line segments, and curves that constitute the figure will be

perceived in different orders on different runs. Though this different perceptual

7.1 Formation of Workspace representations

137

order does not result in a dramatic difference in the structural frame30 of the

representation, it might have some effect on the details of the representation,

especially in view of the fact that Phaeaco does not allocate an “infinite” amount

of time to discover every possible detail that there is in the input. For example, in

the input of Figure 7.1, the two lines have approximately equal lengths, the angle

they form is nearly 60°, and the overall center of the figure (its “barycenter”) is

close to the center of the box. All these are details that Phaeaco might or might

not include in the representation at different runs. Therefore, the description of the

representation of the example in Figure 7.1 that follows cannot be called the

representation that Phaeaco will construct, but merely a possible representation

(though a fairly complete one). It is also important to show how the representation

is constructed in various stages, rather than simply to display its final form.

The image-processing functions that work at the retinal level are quick to

identify pieces of straight lines and to inform the cognitive level of their

discoveries. Whereas the numerical details of such discoveries (e.g., lengths of

lines, slopes, widths, etc.) remain a property of the retinal level, the cognitive

level constructs nodes, which are abstractions of corresponding retinal-level

details. For example, at the retinal level a straight-line segment can be represented

by an equation of the form y = a·x + b, where a and b are specific constants, plus a

number of other computed values, including the starting and ending point of the

line segment. The cognitive level, in contrast, learns simply that “there is a line

segment”. All the numerical details are inaccessible at the cognitive level, which

thus constructs a node representing the knowledge that “there is a line segment”.

Figure 7.2 shows not only this node, but also one that represents the visual box,

30 This term is used here informally. The structural frame of the shape in for example,
can be described as “two line segments that meet at a point”. Overall, the representation contains
much more information than just the structural frame, as will become evident in what follows.

Figure 7.1,

 Workspace Representations

138

since every visual input is enclosed in a b eaco, which thus becomes part

of the representation.

Figure 7.2: An incipient represent

Nodes will be drawn as circles in such

some depiction of the type of the node. F

in Figure 7.2 contains a small square, w

contains a label with the Greek letter

consistently in representational figures,

present in the drawings for our convenien

node. Phaeaco stores internally an integ

introduced node type will have its descript

The arc that connects the two nodes i

node to the λ-node, the link must be read

segment. Traced in the opposite direction

line segment is part of a box. Thus, links

types (“contains”, “is part of ”, etc.) will b

to avoid cluttering them. Some additiona

later. For now we note that if the link is o

an arrowhead at the destination node. Th

way link.

ox in Pha

visual box
line segment
λ

ation: “a line segment in a box”

 drawings, and they will always contain

or example, the node for the visual box

hereas the node for the line segment

 “λ”. Such depictions will be used

but it must be stressed that they are

ce only, to help us identify the type of

er that corresponds to this type. Each

ion next to it in the figures that follow.

s a two-way link. Traced from the box-

as “contains”: a box that contains a line

, the link must be read as “is part of ”: a

 have types, too, but the labels of their

e suppressed from our drawings in order

l properties of links will be explained

ne-way only, this will be signified with

e lack of an arrowhead implies a two-

7.1 Formation of Workspace representations

139

Shortly after constructing the first link, the retinal level discovers not only the

second line segment, but also the fact that the two line segments both belong to a

single connected component, which will here be called an object.31 Informed

about this, the cognitive level creates a node that denotes precisely the existence

of an object that contains the two line segments. But in order to do so, it must

reconfigure the structure of Figure 7.2, because it is now known that the

previously identified line segment is not simply a part of the box, but part of an

object, which in turn is part of the box. Thus, an object-node must be inserted

between the box-node and the λ-node. Figure 7.3 shows not only the object-node

inserted, but al the second line segment as part of the same obje t.

object

λ

F

Objects wil

irregular shape

31 Isolated line se
so

igure 7.3: A box with an object that contains two line segm

l be represented in the drawings that follow by no

, as in Figure 7.3.

gments have their λ-nodes connected directly to the box-nod

c

λ

ents

des with a dotted

e.

 Workspace Representations

140

Up to this point, all nodes at the cognitive level have been created because the

retinal level “said to do so”. In other words, there was strictly bottom-up

processing of information, with the retinal level dictating what must be

constructed at the cognitive level. The construction of each cognitive node,

however, entails the creation of a number of codelets (§6.2.3) in the Workspace,

each specific to the type of the introduced node. For example, each λ-node will

add to the coderack six codelets, “wanting” to represent the slope of the line

segment, and also its length, width, extremities (endpoints), and midpoint, as well

as a count of how many line segments there are in this object (or whatever larger

component contains this line segment, in general). Naturally, the urgencies of

such codelets vary widely. Slope and length codelets, which have very high

urgencies, are selected from the coderack almost immediately.32 The line-

counting codelet has a medium urgency, while the width, extremity, and midpoint

codelets have very low urgencies, so they only have a decent chance to be

selected and to work if there are contextual pressures, i.e., if concepts such as

“line width”, “middle”, or “line end” have been primed in LTM. In the absence of

such contextual pressures, it is almost certain that the activity in the Workspace

will come to an end before these codelets are ever selected. (Soon it will be

explained what causes the activity in the Workspace to cease.)

Another important issue, before the activity of some codelets is exhibited,

concerns the origin of codelets. Who decides how many codelets a line segment

gives rise to, and of what type? Why does a line segment create exactly the six

types of codelets listed above? If this is a predetermined, “hardwired” decision,33

32 An architectural decision reminiscent of (and inspired by) neurons acting as slope and length
detectors in area V1 of the visual cortex of the brain.
33 A “hardwired” decision is one that is determined rigidly by specific lines of programming code.

7.1 Formation of Workspace representations

141

what if in the future a new (hence, overlooked) feature of the concept “line

segment” were discovered, necessitating a new type of codelet to work on it?

The answer is that in Phaeaco the decision of which codelets to build, given a

representational node (e.g., a λ-node), is not simply hardwired. For example, the

particular Platonic node that stands for the concept “line segment” in LTM is

linked to a number of other concepts, such as “slope”, “length”, “width”,

“extremity”, “middle”, and “numerosity”. Given a λ-node, Phaeaco goes to the

Platonic node “line segment” in LTM and creates codelets corresponding to all

Platonic nodes (“slope”, “length”, etc.) that are linked to “line segment” according

to a particular type of link. These linkages are of course pre-manufactured, so in a

sense they are hardwired. But nothing prevents the system from creating a new

linkage in the future after learning something new about line segments. Phaeaco’s

LTM is both hardwired (non-empty at startup) and expandable (new concepts and

linkages can be added as the system processes information). Thus the answer to

the question of the rigidity of codelet types is that Phaeaco’s ability to “learn”

(i.e., expand and modify its LTM) is responsible for adding future behaviors that

were not inherent in its initial programming code.

This pertains to a deeper issue that deserves a brief additional comment. A

common misconception among lay people, and even among computer scientists

who do not work in AI or cognitive science, is that “computers can do only what

they have been programmed to do”. By implication, computers will remain

eternally dumb, unable to demonstrate the flexibility and creativity of intelligent

human minds. Indeed, for programs that include only their lines of programming

code, this is trivially true. But a program such as Phaeaco includes its memory as

well, which is permanently modifiable by what Phaeaco “sees”. In principle, what

Phaeaco “sees” cannot be predetermined, since it might process pixels that arrive

 Workspace Representations

142

through a camera foc sed on the external world. Thus, Phaeaco’s LT , and by

extension its behavio abstractly reflects the history of its transactio with its

environment. The un redictability of the latter implies tha Phaeaco’ behavior

cannot be considered tirely preprogrammed.

Figure 7.4: The representation as it looks after the work of some codelets

Figure 7.4 shows a further stage of the modification of the repres

the input, after a small number of codelets (all elicited by the λ-no

selected from the coderack and run. The λ-node on the left is connec

additional nodes, one representing the slope of the line (left) and one re

the length of the line segment (right). The λ-node on the right is conn

single additional node, representing the fact that the program has “

counted only one of the two lines, so far.34 Note that the connecting lin

unidirectional, shown in the diagram by arrows ending on the linked no

34 Not necessarily all entities need be counted, especially if they are many, as will be
§10.3.15. Also, if m things are later seen as n, a codelet will be launched to update the

line lengthline slope
λ-num

λ λ

λ

M

ns

s
u

r,

p

en
erosity
t
1

entation of

des) were

ted to two

presenting

ected to a

seen” and

ks are now

des. There

 explained in
 count.

7.1 Formation of Workspace representations

143

is no particular reason for selecting these features (slope, length, and a λ-counter)

to show in Figure 7.4; a more or less random sample of them was selected, just as

the system selects and runs the corresponding codelets randomly.

The nodes for slope and length, shown in Figure 7.4, are of a type called

feature nodes. The characteristic of such nodes is that the programming structure

that implements them includes not simply a number (for the angle of the slope, or

for the length), but a small set of statistics, defined as in Table 7.1:

Field Description

N number of observations

mean average value of sample data

var variance of sample data

sum_sqr sum of squares of sample data

min minimum value of sample data

max maximum value of sample data

Table 7.1: Programming structure for the statistics of a feature

The reason for maintaining a set of statistics as opposed to a single number for

a feature node is not apparent at this early stage in the representational buildup. It

looks as if a single observation made by a single codelet should result in a single

number. Although this is true, Phaeaco does not make single observations but

repeated ones, even on the same input (the details of this mechanism will be

explained in §11.1.3). Thus the structure of a feature node must accommodate a

set of statistics, instead of just one single number. The advantage of employing

statistics will be explained in the context of pattern formation (§8.3).

Slopes and lengths are examples of continuously varying features. There are

also discrete-valued features, to be discussed soon.

 Workspace Representations 144

The λ-node on the right of Figure 7.4 is connected to a different type of node,

called a numerosity node (marked by the symbol “1 λ” in the figure). T e concept

of numerosity (§1.2. §5.1.1) is a familiar one in psychology and cognitive

science, and a large n mber of books and dissertations have been devo d to it. A

brief overview of num rosity in general, as well as a detai descripti n of how

Phaeaco deals with it, s given in a later section (§7.3). Her suffices say that

although a numerosit node is not the same as a feature n , it share with the

latter the characteristi of being described by a set of statis s (Table 7 1), rather

than by a single value

Figure 7.5: Further enrichment of representation: texture, vertex, and updated λ-nu

texture

vertex

λ-num
update

λ λ

λ

V

h

te

o

to

s

.

1,

u

e

 i

y

c

.
erosity
d
d

 it

de

c

le

e

o

ti

2

merosity

7.1 Formation of Workspace representations

145

In Figure 7.5, more nodes and connections have been added to the

representation. First, there is a texture node, linked directly from the object node.

This is one of the feature nodes, and was added because a codelet ran that

“wanted” to examine the “texture” of the object. (This codelet was put on the

coderack by the codelet that created the object node, but only now was it selected

to run.) A texture is a discrete-valued feature in the domain of BP’s. Objects in

BP’s are usually either outlined or filled. These are the only two values that a

node of this type can represent. Naturally, the texture of an object can be a much

richer notion than simply “outlined” or “filled”, as BP’s #196 (Figure 2.12), #97

(Figure 2.7), and #180 (Figure 1.15) clearly demonstrate. In such complex cases

the texture cannot be represented by a simple value but requires an entire

representational sub-tree that would be described, for example, as “parallel lines

slanted at 45°, narrowly spaced” (see box I-D of BP #97, Figure 2.7, for an

example). The texture nodes presented here make no attempt to encompass such

complex notions.

The texture of the Λ-shaped object examined here is perceived as “outlined”.

But a question immediately arises: How thick can a line be before it is perceived

as possessing an identifiable shape, and therefore no longer as a line but as a filled

object of that shape? Figure 7.6, below, illustrates this point.

Figure 7.6: Line segments or filled objects?

Assuming there is no contextual pressure, Phaeaco’s retinal level has a

probabilistic threshold of “thickness” (concentration of black pixels) beyond

which it perceives a thick line as a filled object. This threshold has been manually

 Workspace Representations

146

fine-tuned so that it corresponds approximately to the threshold beyond which the

human eye also tends to see a filled object, rather than a line, from a reasonable

distance.35 Under contextual pressure, however, the value of this threshold can be

pushed up or down, which is an example of how higher-level contextual pressures

can cause a change in the functioning of the lower-level retinal procedures.

There is another issue concerning the statistics of discrete features. All feature

nodes, as mentioned earlier, have a set of statistics as given in Table 7.1. But if a

feature can take on discrete values only, what sense does it make to compute a set

of statistics? Is it necessary to store an average, a variance, etc., for a binary

feature such as texture? The answer is that when a single object is considered,

naturally the value of its texture is either “outlined” or “filled”. But when a

pattern is formed, as will be explained in §8.3, several objects of different

textures might be matched together to form an object of “average” texture.

Internally, Phaeaco assigns the value 0 to “outlined”, and 1 to “filled”, so an

average texture might have the value 0.75. This is not devoid of meaning; it is as

meaningful as the statement that the average family of a given population has 2.15

children. These ideas will become clearer in chapter 8. For now we simply note

that statistics on discrete features are useful in general.

A second addition to the representation in Figure 7.5 is the vertex node, which

is shown at the bottom of the figure and has the label “ V ”. Note that both λ-nodes

are linked to it with a two-way connection. Such nodes are not the result of

codelet activity, but of further processing at the retinal level.

35 The total length of a thick line might also play a role in whether the human eye perceives a line
or a filled object, as the rightmost examples of suggest. For small objects, Phaeaco uses
a magnification algorithm that attempts to replicate a close-up view. If the object is too tiny,
Phaeaco cannot compete with the human eye, and will perceive a “dot” instead, i.e., a point with a
certain size (more about dots and points in §10.3.10).

Figure 7.6

7. Formation of Workspace representations

147

Finally, a third odification of the representation in Figure 7.5 i the updating

of the λ-numerosi node, which now is linked with h λ-node and has the

la el “2 λ”. The n w connection was created when the elet that as assigned

th task of countin the leftmost λ-node was selected an n. The c elet located

th already existin λ-numerosity node in the structure (abeled “1 λ” in Figure

7.), updated it, an linked it with the λ-node.

Figure 7.7: A new line slope, object numerosity, and updated line len

Some additional nodes are shown in Figure 7.7, all the result of f

activity. The object has been counted, building the object numero

the structure. Thus, each numerosity node “knows” (stores internally

quantity involved but also the type of the counted entity. A second m

that the slope of the rightmost λ-node has been noticed. Finally,

lin
updated
length

object
numerosity

V

s

s

 w

od

λ

 m

ty

e

g

g

d

λ

t

od

ru

l

λ

bo

 c

d

2

1

b

e

e

4

1

gth

urther codelet

sity node into

) not only the

odification is

the node that

e slope

 Workspace Representations

148

represents the line-segment length is now linked with both λ-nodes. This is

because the two line segments have approximately the same length. The word

“approximately” here means the following. At the retinal level, two quite accurate

numbers have been computed as lengths of the two line segments. At the

cognitive level, however, there is a threshold imilarity for lengths beyond

which two lengths are treated as exactly equal. threshold has b en manually

set so that, in the bsence of contextual pressure treats as equal hose lengths

that the human ey would probably not distingu As in the case o line widths,

however, the con xt might modify the value o is t shold. Fo example, if

there is sufficient great pressure to see a trian as i o celes, bu its two sides

(other than its bas are not exactly equal, lower he eshold of cceptance of

length equality wi allow the two nearly equal si to b reated as qual.

Figure 7.8: Convex hull added

c ex hull

1

V

e

 t

f

r

t

 a

 e

λ

a

e

te

ly

e)

ll

λ

re

s

r

 t

v

λ

h

s

th

e

on

2

of s

This

s, it

ish.

f th

gle

ing t

des

c.h.

7.1 Formation of Workspace representations

149

Figure 7.8 shows a single added node representing the convex hull of the

shape. The convex hull of a set of points can be defined geometrically in more

than one way. For example,

• it can be the smallest closed figure that includes all points, such that the

tangent to any point on its perimeter does not intersect the figure; or,

• it can be the smallest closed figure that includes all points, such that if we

choose any point in its interior and draw a straight line in any direction, the

line will intersect the perimeter of the figure at exactly one point.

Here we do not need to use either of the above definitions, however, nor are

they necessary for Phaeaco. An algorithm for constructing the convex hull of a set

of points that starts with three points and proceeds incrementally with additional

points is given in §10.3.18. An easy way to visualize the convex hull is by

imagining the shape that a tight rubber band would take if stretched so as to

include all points.

Figure 7.9: Convex hull of a set of points

How immediate is the perception of the convex hull in our cognition? Do

people immediately recognize it and perform cognitive manipulations on it, or is

it something seldom noticed? As the experimental data in Appendix A show, the

answer is probably somewhere in the middle. Of the 31 subjects asked to solve

BP #4, which involves the notion of “existence of depressions”, 17 did not answer

 Workspace Representations

150

at all, nine gave a wrong answer, and only five (or about 16%) answered

correctly. One might argue that using the idea “existence of depressions” is not

the same as “seeing” the convex hull itself. There is also BP #12 (Figure 7.10),

however, in which the perception of convex hulls is probably involved more

directly. On the left side, figures are clearly elongated; on the right side, most

figures are not elongated, except one, in box II-C. That figure can be seen as “not

elongated” only if the convex hull around it is perceived. To reach the solution,

one must therefore perceive the convex hull around all other figures. Of the 30

subjects asked, 21 supplied no answer, two gave a wrong answer, and seven (or

about 23%) answered correctly.

Figure 7.10: The figure in box II-C of BP #12 is not elongated only by perceiving its convex hull

These results suggest that the convex hull is a percept that people are capable

of perceiving, albeit not easily. Accordingly, Phaeaco is not very eager to “see” it,

7.1 Formation of Workspace representations 151

a d chronologica y it is one of the last percep elements that e built into a

r resentation. T s is because of the low urge of the convex- ll perceiving

c delet, which is ut on the coderack along wit er co elets that esult from an

o ject node. Non heless, once the convex hull erc ed and its node is added

t the representa on, it results in the addition a f w more co elets into the

c derack. One of hese codelets with relatively ur e cy comp es the area of

t convex hull, d picted in Figure 7.11, along on ore elem t.

h

n

“

n

ep

o

b

o

o

he

1

F

It should be n

ave entered the

ot real, but imag

large” the Λ-sha

ll

hi

p

et

ti

 t

e

λ

igure 7.11: Area of convex hull, and barycenter of object

oted that with the introduction of the notion of c

domain of imaginary percepts. The convex hull as

ined mentally. Equally imaginary is its area, whi

ped object is, although it consists of only two

barycenter

V

A
λ

ar

hu

 r

d

ut

en

λ

tual

ncy

h oth

 is p

 of

high

with

c.h.
d

v

n

m

ei

e

g

e

2

onvex hull we

 an “object” is

ch tells us how

line segments.

area

 Workspace Representations

152

Figure 7.11 shows one more imaginary percept: the barycenter, or center of

gravity of the object. This is the point on the plane where the object would

balance if it were a physical object and each of its pixels had the same mass. This

point seems to be relatively easy to perceive, as the data on BP #8 suggest.

Figure 7.12: BP #8, solved by noticing the placement of barycenters within the boxes

BP #8 (Figure 7.12) was solved by 24 out of 31 subjects (around 77%),

whereas the other seven subjects did not provide an answer (see Appendix A).

If barycenters are somewhat easy to see in isolation, perceiving them becomes

compelling if the objects are lined up in some fashion, as BP #84 indicates

(Figure 7.13). This problem was solved by 100% of the subjects (31 out of 31),

and in a relatively short time (average 13 sec). The lined-up objects in BP #84 are

very small circles, and we group them together (separating them from the

somewhat larger square in each box) because they are so similar (more on this

7.1 Formation of Workspace representations

153

mechanism in chapter 8). When a group with a number of objects is perceived,

one of the things that Phaeaco does is to abstract the objects with their barycenter,

which leads it to perceive the shape formed by their barycenters (§10.3.15).

Figure 7.13: BP #84, where objects are lined up forming larger shapes

Another question is whether it is the barycenter of the object itself that is

perceived, or the barycenter of its convex hull. Consider the object in Figure 7.14.

Figure 7.14: Barycenter of object (A), and barycenter of convex hull (B)

A
B

Figure 7.14 shows a rather extreme case where the barycenters of the object

(A) and its convex hull (B) are widely separated. The object consists of a heavy

 Workspace R presentations 1 4

“ ody” and a ligh weight “flagellum”. In lining this object with ther objects,

it eems more na ral to use A than B. Phaeac uld e A, alth ugh it is in a

p sition to percei e the barycenter of a convex l in suitable c ntext. Notice

th t the barycente node in Figure 7.11 is conn d d r ctly to th object node,

w ich implies tha this is the barycenter of the o t its .

The next figur shows the final representatio the Λ-shaped o ject.

Figure 7.15: Final representation, with c

Once the barycenter is perceived, it places

each for its x- and y-coordinate. These codelets

once on the coderack, and thus Phaeaco gets

within the visual box. Finally, the area of the

y-coord.
x-coord.

 up

o wo

 hul

ecte

bjec

n of

c.h.
oordinates of barycente

two codelets on the

are almost always se

an idea of “where”

 convex hull has

A

V

e

 o

o

o

e

b

λ

t

tu

v

r

t

e

λ

5

b

 s

o

a

h

1

us

e

lf

λ

 a

i

e

2

r

 coderack, one

lected and run

 this object is

been added in

7.1 Formation of Workspace representations

155

Figure 7.15. Although the object consists of merely two line segments, the area of

the convex hull gives a rough idea about how large an object these lines make.

This concludes the quick tour of representation-building, based on the

example of the Λ-shaped object of Figure 7.1. As was mentioned earlier, a

representation might not include all of the nodes shown in Figure 7.15, or it might

include a few more (such as the angle between the two lines as a feature of the

vertex, the coordinates of the vertex and/or the free end-points of the two lines,

and so on). What is represented at any given look at the input is probabilistic.

However, the probabilities are not completely random, but biased. For example, it

is impossible for Phaeaco to fail to represent the two line segments, or the fact

that they meet each other and form an object. But as we proceed deeper into the

structure of Figure 7.15 (starting from the box-node at the top and proceeding to

further linked nodes), the possibility exists that some of the less important leaves

in this structure will not be built into it. In a different look at the input, however,

such leaves might be included, and others omitted. The importance of the various

representational elements is determined by the urgency of the codelets.

At this point the reader might expect a precise list of codelets generated by

each type of representational node. However, this level of detail will not be

provided, because the exact number, quality, and urgencies of generated codelets

per node type is not what makes the system work. Different implementations

might cause different codelets to be put on the coderack, selecting and running

them at various times due to their varied urgencies. The important proposal here is

that the general outline of representation-building be followed, as described in this

and subsequent chapters. For the same reason, not even a precise listing of all

visual primitives is absolutely crucial, though all those that Phaeaco’s current

implementation uses will be discussed in §7.4.

156 Workspace Representations

7.2 Activation of nodes and monitoring activity

A detail that was glossed over in §7.1 was the issue of termination of the

representation-building activity. How were the codelets “persuaded” to cease

building further elements in the structure, thereby avoiding the perception of

details36 the human eye almost never sees? One might assume that all generated

codelets were eventually given their chance to run, and when the coderack was

left empty, activity ended. This cannot be the case, however, because, as was

mentioned in the paragraphs immediately following Figure 7.3, each λ-node

automatically places on the coderack six codelets, one of which “wants” to

measure the width of the line segment, another that “wants” to represent the

midpoint, and so on. Why were those codelets not selected? Even if their

urgencies were very low, when they were left as the only choices on the coderack

they should have been given a chance to run. An explanation is in order for how

the building activity might end while the coderack is still not empty.

The answer to this question involves an additional element of the structure of

a node, which might seem insignificant at this point but will later play an

important role in the description of the properties of the LTM. The additional

element contained in each node is called activation, and is implemented as a real

number in the interval (0, 1).37 Activations can be increased in discrete steps by

small “injections”, as we shall see, and they decrease gradually and automatically

also in discrete steps, as time goes by. Before specifying the exact parameters that

36 Examples of such details would be the bisector of the angle, the slope of that bisector, the mid-
points of the two line segments, the line that connects those mid-points, the line that connects the
two endpoints — thus completing the triangle — and many more.
37 The parentheses (as opposed to brackets) are intentional, and mean that the two end-values of
the interval, 0 and 1, are excluded as possible values of an activation, as we shall soon see.

7.2 Activation of node and monitoring activity

157

control changes in value f an activation, let us see how activa s are use in the

build-up of a representat n.

Consider again Figu 7.5, repeated and enriched below as ure 7.16

Figure 7.16: Figu

When the leftmost n

activation was assigned

soon see what that is). Im

the λ-node (and in gene

the λ-node injected a bit

object-node; and so on,

situation is depicted in

the reading of which is

λ
s

 o

io

re

re 7.5, repeated, with activations on some nodes illustrated

ode, representing a slope, was added to this struc

 the maximum value, a number very close to 1 (w

mediately, this injected a bit of activation into its

ral to all of its parents, if it had more than one).

 of an upward push to the activation of its own pa

 all the way to the ultimate ancestor, the box-no

Figure 7.16 with a “gauge” next to the nodes me

 assumed to be high if the activation is close to

V

d

.

λ

on

ig

λ

ti

 F

2

ture, its

e shall

 parent,

In turn,

rent, the

de. This

ntioned,

 1. The

 Workspace Representations

158

reading of the λ-node appears to be slightly lower than that of the newly

introduced slope-node in the figure, because some time has passed since the

introduction of the λ-node into the structure (a time at which its activation started

at its highest value), and, as was mentioned earlier, activations drop gradually as

time goes by, if nothing else happens to them. Naturally, the newly introduced

slope-node gave a small upward push to the activation of the λ-node, but this was

not enough to cause the latter to reach its maximum value. Similarly, the gauges

of all other ancestor nodes are shown with their readings progressively lower as

we move toward the root of the structure, reflecting the earlier times at which they

were introduced.38 This remark does not imply that the activation of a node will

never reach high readings again. Often it happens that there is a flurry of activity

in descendant nodes that, collectively, pushes the activation of a parent node to its

maximum, only to have it gradually drop again later, due to the passage of time.

All this leads to an explanation for how the activity in the workspace can end

while still having codelets waiting in the coderack. What does the trick is the

activation of the root-node of the representation — the box-node in this case.39

When the activation of the root-node drops below a threshold (a minimum value

close to 0, also to be explained soon), the representation is considered complete,

and the input considered “seen” to Phaeaco’s satisfaction at this stage, forcing all

further codelet-instigated processing in the visual box to cease.

A description of the mechanism according to which activations increase and

decrease is now given. The reader should keep in mind that the same mechanism

is used in various other components of the architecture: in “strengths” of links,

38 This orderly progression is not necessary. In §7.1 a λ-node was introduced before its parent
object-node. Nonetheless, attempts to convey the general idea.
39 A box-node is not the only candidate for a root-node of a representation. The node for a BP
side, for instance, contains six boxes, and the node for an entire BP contains two side-nodes.

 Figure 7.16

7.2 Activation of nodes and monitoring activity

159

and in the activation a ignificance” of LTM nodes, all to be explained in later

chapters.

The main element n activation structure is its value, a real number in the

open interval (0, 1), de d on the y-axis of the graph in Figure 7.17.

0

1

1

ac
tiv

at
io

n

Figure 7.17: A sigmoid that shows how

The interpretation of the graph

that can take on values only on t

along the x-axis, the number of w

Let x be the value of the marked l

The sigmoid function f, also show

of the activation at a time during w

The only way an activation ca

“advance to the next marked

monotonically increasing, if x mo

value.

There is no way to ask explici

decrease only “naturally”, by the p

the quantity on the x-axis move
discrete steps
x

nd “s

 in a

picte

f (x)

 the activation value (on the y-axis) can change in time

in Figure 7.17 is as follows. There is a quantity

he discrete marks depicted at regular intervals

hich is a parameter of the activation structure.

ocation where the dotted vertical line is drawn.

n on the graph, defines f (x), which is the value

hich the coordinate on the x-axis is at x.

n increase is by receiving a signal of the form

location on the x-axis”. Thus, since f is

ves to the next spot, f (x) will take on a larger

tly an activation value to decrease. Activations

assage of time. After a given time unit passes,

s to the previous marked location, and f (x)

 Workspace Representations

160

decreases accordingly. The time unit required for this to happen is another

parameter of the activation structure.

Why must the shape of f be a sigmoid? Would other shapes work as well?

First, observe that a strictly monotonically increasing function that starts at 0 and

ends at 1 is needed, so that, given the abstract signal “intensify activation”, f (x)

will actually increase, not decrease. Second, there only are a few possibilities of

simple curves with these constraints — and the reasoning for a complex curve

would be hard to justify. Figure 7.18 presents three such possibilities.

 0

1

1

ac
tiv

at
io

n

0

1

1

ac
tiv

at
io

n

0

1

1

ac
tiv

at
io

n

A B C

Figure 7.18: Three alternative possibilities for a monotonically increasing function f

The leftmost function (Figure 7.18 A) has an initial fast-rising part, and a final

slow one as it approaches 1. The rapid initial rise in this function is inappropriate.

An activation implements in an abstract way the idea “let’s see if there is

something interesting here”, or “let’s pay attention40 to this”, where “this” can be

a node, an input box, a concept, a whole side of a BP, etc. — let us use “idea” in

this discussion to refer to anything that can be activated. If the initial part of the

activation function increased as rapidly as in function A, the system would pay

much attention to this idea on only the tiniest suggestion that it is significant.

40 This is a sub-cognitive “attention”, not to be confused with the conscious focus of attention.

7.2 Activation of nodes and monitoring activity

161

However, the opposite should in fact happen: the system should be conservative

in incrementing activations at the outset, when evidence of importance is still

insufficient, so as to be able later (when enough evidence arrives) to separate the

more important ideas from noise. Function A would allow most of the “chaff ” to

pass as “wheat”.

The rightmost function C, on the other hand, has a different kind of problem.

If we want to allow activations to drop gradually and naturally, as time goes by,

function C is problematic because it cannot hold onto any highly activated idea at

all. As soon as a short time elapses, activation drops dramatically. The opposite is

needed: if an idea has been identified as interesting, hence highly activated, the

system should be able to hold onto it for a while; perhaps more evidence will soon

arrive and confirm its importance.

Finally, function B was supplied only for the purpose of completeness. It is a

“bland” function that acts neither conservatively to suppress noise, nor prudently

to retain important ideas. In conclusion, the most felicitous function must be one

that has the shape of a sigmoid.

The previous abstract description might not seem to make sense in the context

of node activations of working memory representations. But the concept of

activation is highly versatile and pervasive in Phaeaco’s architecture, and since it

is introduced in this subsection it is explained in all its details here, even though

its full force will become evident only in the context of the discussion of LTM.

At this point the reader might infer that function f must be explicitly defined

somehow in the structure of an activation. This would be a rather straightforward

implementation. We could, for example, define f (x) as some form of an

arctangent function, f (x) = arctan (a·x + b) + c, which has the shape of a sigmoid.

We could specify the parameters a, b, and c, so that f passes through points (0, 0)

 Workspace Representations

162

and (1, 1), and has its point of inflection at (½, ½), as in Figure 7.17. However,

sometimes the most general and straightforward solutions prove disastrous in the

implementation of a complex system. Phaeaco is a highly parallel system that

would benefit greatly if implemented in a computer with a true parallel design. At

present, however, Phaeaco’s parallel nature is constrained to run on single-

processor computers. Overloading its computation of activation — repeated

hundreds of thousands (if not millions) of times per BP-solving session — with

the calculation of a fun as demanding as an arctangent would result in a

system that worked in t , but in practice was unable to deliver the expected

results. Accordingly, a s id-like function is implemented in Phaeaco without

making use of trigonom or other math-intensive calculations. To this end, the

sigmoid function is parti d into three distinct pieces (see Figure 7.19).

1

Figure 7.19

Figure 7.19 shows a

curved one rising upw

curved part decelerating

computationally inexpe

expensive operation. Sp

of two hyperbolas: f1(x
ction

heory

igmo

etric

tione

f (x2)
ac
tiv

at
io

n
f (x1)

0 x2 1x1 ½

: Separating the sigmoid into three constituent parts

 sigmoid-like function consisting of three parts: an initial

ards, a middle linear section (highlighted), and a final

 toward (1, 1). These three parts can be implemented in a

nsive way, by making use of only division as the most

ecifically, the initial and final curved parts can be pieces

) () 1111 cbxa ++= and f2(x) () 2221 cbxa ++= . It is not

7.2 Activation of nodes and monitoring activity

163

necessary to insist that the sigmoid-like curve be smooth; for example, at point x1

the slope of the tangent as x → x1 from the left can be different from the slope of

the tangent as x → x1 from the right; and similarly for x2. Other simplifying

assumptions, implied by the fact that the sigmoid-like function has a center of

symmetry at (½, ½), are that x2 = 1 – x1 (assuming x1 < ½), and that parameters a1,

b1, and c1, are not independent of a2, b2, and c2, since the two curved pieces are

mirror images of each other, and thus pieces of the same hyperbola. But we need

not become further mired in the specifics of the implementation at this point.

Suffice it to say that a number of simplifying decisions, such as those above, can

lead to an implementation that uses computer resources efficiently.

7.3 Numerosity

The percept of numerosity was briefly introduced in §1.2.1, and BP’s that depend

on the perception of numerosity were discussed in §5.1.1, along with an outline of

how Phaeaco handles such BP’s. The present subsection discusses in greater

detail the percept of numerosity and its implementation in Phaeaco’s architecture.

Figure 7.20: How many dots are present, without counting?

 Workspace Representations

164

An example of the simplest kind of the percept of numerosity is given in

Figure 7.20. Assuming we are allowed to look at the figure for no more than a

second, how many dots are there in the box? Even though an exact answer cannot

be given, people can make a rough estimate. Clearly, hardly anyone would report

fewer than 10 or more than 50 dots (and these limits seem far too conservative).

Reasonable guesses could be in the range between 15 and 30.

7.3.1 Background
That we do not need to resort to explicit counting to have a rough sense of the

quantity of something is a well established finding in psychology. Since the

1920’s, psychologists have been examining the relation between the number of

occurrences of an input feature (“stimulus”) and the strength of its association

with a corresponding action (“response”) by a cognitive agent (Thurston, 1927).

Because the estimation of the absolute number of a percept (such as the number of

dots in Figure 7.20) depends on the subject’s prior experience with small and

large numbers, and even on their cultural background, later studies focused on the

perception of ratios, or differences of numbers.41 For example, in one study

subjects were presented with 20 × 20 arrays of short vertical and horizontal lines,

and were asked to estimate the proportion of one of the two orientations in the

array (Shuford, 1961). It was found that the estimates were more accurate if the

actual proportion of the specified target-orientation was either small (20% –30%)

or large (70% –80%), whereas the worst estimates were made when the proportion

was around 50%. This is consistent with the idea that smaller numbers are

41 However, studies letting subjects report directly a number to describe the perception of
numerosity have not been absent (e.g., van Oeffelen and Vos, 1982).

7.3 Numerosity 165

perceived more accurately than larger ones.42 The study included also red and

blue squares instead of vertical and horizontal lines, and the results were similar.

Other studies focused on response times. It was found that subjects are faster

in determining the correct order of two digits if the difference between the two

digits is large, rather than small (Moyer and Landauer, 1967). Experiments were

repeated with letters of the alphabet, judging their alphabetic distance (Parkman,

1971), dot patterns (Buckley and Gillman, 1974), rows of dots, and the auditory

form of spoken English words for numbers (Shepard, Kilpatric et al., 1975). In all

cases the decision time was found to follow approximately a logarithmic function

of the numerical difference between the two compared quantities, known as

Welford’s formula (Moyer and Landauer, 1973; Welford, 1960).

−
⋅+=

SL
LkaRT log

Equation 7.1: Welford’s formula for reaction time in numerosity comparison

In Welford’s formula (Equation 7.1), which is an elaboration of the Weber–

Fechner law,43 RT stands for “reaction time”, L and S are the larger and smaller of

the two compared quantities, respectively, and a and k are constants.

In addition to people being able to compare quantities, it is well known that

animals also have a sense of numerosity that varies from rudimentary to

astonishing, depending on the species. In a series of studies, experimenters taught

hungry rats to press levers a number of times to receive food. The rats learned by

trial and error (by hitting the levers randomly) that, for example, after four hits on

42 A large number of horizontal lines in an array implies a small number of vertical ones. Thus, in
seeking to estimate the proportion of one kind in a sample that consists of two kinds, “small”
means close to one of the two ends (0% or 100%), whereas “large” means close to 50%.
43 According to the Weber–Fechner law, linear increments in sensation S are proportional to the
logarithm of stimulus magnitude m: S = k·log(m) (Fechner, 1860; Weber, 1850).

 Workspace Representations

166

lever A and a final hit on lever B, the door of a compartment with food would

open; other rats learned that the “right” number on lever A was eight; and so on,

up to such “exotic” numbers as 12 and 16 (Mechner, 1958; Platt and Johnson,

1971). It turns out that the performance of the rats is very telling regarding their

perception of numerosity. The animals never learned to hit lever A the right

number of times accurately, but only approximately. When their attempts were

cumulatively plotted on a graph, it was found that the population of hits

approximated a Gaussian with mean value close to the right number.

Desired number of hits

Observed number of hits

%
 R

es
po

ns
es

Figure 7.21: Rat numerosity performance (adapted from Dehaene, 1997)

Figure 7.21 depicts an idealization of the rats’ performance. (For the actual

data, see Mechner, 1958.) The depicted curves would be more accurate if they

were slightly skewed towards the left, especially those at the low-numerosity end.

7.3 Numerosity 167

Even so, it is clear from the figure that the rats overestimated the desired number

of hits, and the higher the desired number, the larger their overestimation. This

was probably an artifact of the experimental procedure: the rats received a penalty

for switching to lever B prematurely, after an insufficient number of hits on A.

(Without the penalty they would immediately try to hit on B.) Also note that their

accuracy dropped as the desired number of hits increased: the variability of their

responses increased in proportion to the number that the rats were aiming for.

Variations of such experiments showed that not only rats but many other

species are capable of perceiving numerosity in a variety of input forms: food

items, sounds, time duration, light flashes, and more. Raccoons, for instance, can

learn to select the transparent box that contains exactly three grapes, and to ignore

similar boxes that contain two or four grapes. Birds can be taught to pick the fifth

seed they find when visiting several interconnected cages. Pigeons, in particular,

can discriminate between forty-five and fifty pecks at a target, under some

circumstances (Dehaene, Dehaene-Lambertz et al., 1998).

 Further support for animal arithmetic skills comes from findings such as that

chimpanzees are capable of integer and even fraction addition. In one experiment,

a chimp was allowed to select one among two trays with piles of chocolate chips

for eating. Tray A contained two piles, one with four and another with three chips.

Tray B contained also two piles, one with five, and another with a single chip.

The two piles were widely separated in each tray. After watching the situation

carefully, without any prior training, the chimp selected the tray with the 4+3=7

chips, instead of the one with 5+1=6 chips (Rumbaugh, Savage-Rumbaugh et al.,

1987). In another experiment, a chimpanzee was first trained in fractions. When

presented with a glass half-filled with a blue liquid, the animal had to point to an

identically filled glass standing next to one that was three-quarters full. Then the

 Workspace Representations

168

task was abstracted to one in which, after being shown the half-filled glass again,

the animal had to make a choice among a half apple or three-quarters of an apple,

which the chimp passed successfully. Finally, the stimulus consisted of a half-

filled glass and one-quarter of an apple, whereas the choice was between one full

disc and a three-quarters disc. The animal chose the latter more often than chance

alone would predict. Whatever underlying representation was used, the chimp

must have performed the equivalent of ½ + ¼ = ¾ in human math notation

(Woodruff and Premack, 1981).

If animals are capable of such arithmetic feats, it is hardly surprising that

human babies have similar abilities. Indeed, Piaget’s constructivist theory

notwithstanding,44 perception of numerosity has been confirmed in infants.

Introducing the now widely used method of infant habituation45 in the 1980’s,

Prentice Starkey first established that children between 16 and 30 weeks of age

were able to discriminate between small numbers, such as two and three (Starkey

and Cooper, 1980). Later it was argued that even newborns could discriminate

between numbers two and three a few days after birth (Antell and Keating, 1983).

Several more experiments have established that infant abilities in numerosity

perception are as sophisticated as those of other species. Indeed, no adult

44 Jean Piaget, in mid-twentieth century, claimed that children are born with a mind that is
essentially “blank” in mathematical abilities, and gradually reach the abstract concept of number at
the age of six or seven, after first having been trained in more fundamental notions, such as
sensory-motor skills, the elements of logic, and the ordering of sets; before that age, the child is
simply not “ready” for arithmetic (Piaget, 1952; 1954). Today Piaget’s theory is known to have
misinterpreted a number of results from early experiments, and to contradict more recent
experimental findings (Dehaene, 1997; Mehler and Bever, 1967).
45 According to this method, a child is shown repeatedly scenes that include identical, or very
similar percepts, until the child is habituated and looks away very soon after each presentation.
When a perceptually different scene is introduced without warning, the child’s fixation time on the
“interesting” scene is recorded. A longer fixation time indicates the child noticed the difference.

7.3 Numerosity 169

chimpanzee or other animal seems capable of competing with human children

older than three years of age (for a review, see, e.g., Lakoff and Núñez, 2000).

The perception of numerosity by humans (of any age) is different from the

concept of “number”, acquired after years of formal training. Though we instantly

have a sense of quantity by looking briefly at the dots in Figure 7.20, we feel at a

loss if asked to report their exact number. Nonetheless, given sufficient time, we

can employ some method for counting the dots (perhaps using our fingers as aids

to conceptually group and avoid re-counting some already-counted dots), by

which we can report the exact number (23 in Figure 7.20). In many aspects, our

numerosity perception does not differ at all from the corresponding ability of

some animals. Specifically:

• our ability to discriminate between quantities is sensitive to the difference of

those quantities: it is easier to discriminate between 5 and 10 than between 5

and 6; and

• our discrimination ability is also sensitive to the absolute magnitude of the

compared quantities: it is easier to discriminate between 5 and 6 than between

25 and 26.

Both observations are predicted by Welford’s formula (Equation 7.1).

7.3.2 The accumulator metaphor
What cognitive mechanism could possibly account for the arithmetic abilities of

animals, or for something like Welford’s formula? Iterative (algorithmic)

mechanisms have been proposed by some authors (Buckley and Gillman, 1974;

Moyer and Bayer, 1976), but they apply only to comparisons of quantities, and

not to perception of quantity per se. Instead, Phaeaco implements a mechanism

 Workspace Representations

170

that models directly the perception of quantity, called “the accumulator metaphor”

(Dehaene, 1997). Due to its simplicity, this model is particularly elegant.

According to the accumulator model, each of the dots in Figure 7.20 adds to

an internal cognitive “accumulator” a quantity that is not exactly “1”, but “around

1” (because in biology this is implemented with an inexact chemical quantity,

rather than digitally). The added quantity can be thought of as a random variable

from a Gaussian distribution with mean µ = 1 and standard deviation σ0 — a

constant for each individual, but varying slightly across individuals. Thus, for

example, the 23 dots of Figure 7.20 add to the accumulator 23 random numbers

generated from a normal distribution N (1, σ0), for some σ0. The larger the number

to be perceived, the larger the margin for error in the accumulator. Does this

model explain the observations of §7.3.1 regarding the perception of numerosity?

The sampling distribution of the sum of n Gaussians N (µi, σi), i = 1, … n, is

again a Gaussian N (µΣ, σΣ) (Equation 7.2; this can be proved by induction on n).

∑
=

Σ =
n

i
i

1
µµ ∑

=
Σ =

n

i
i

1

2σσ

(a) (b)

Equation 7.2: (a) mean and (b) standard deviation of a sum of Gaussians

In the case where all µi are equal to 1 and all σi are equal to a constant σ0 it

follows that µΣ = n, and σΣ = n σ0. Thus, the probability density function Gn for

the n-th cumulative Gaussian is given by Equation 7.3.

()
()

2
0

2

2

02
1 σ

σπ
n

nx

n e
n

xG
−

−

=

Equation 7.3: Probability density function for a sum of Gaussians N (1, σ0)

7.3 Numerosity 171

Phaeaco uses Equation 7.3 both for the task of estimating the quantity of

anything perceivable and for the task of comparing quantities as follows:

Suppose the input contains n similar percepts (they can be objects, slopes,

angles, relations, or anything discrete, hence countable). To form a representation

of the numerosity of such percepts, Phaeaco executes the procedure suggested by

the accumulator metaphor, i.e., adds a random number generated from N (1, σ0) to

a numerosity node n times. (Such additions happen not all at once, but whenever

one of the instances of the counted entity is perceived — cf. also the construction

of the node that counts the numerosity of the two lines in the example of §7.1.)

When Phaeaco is asked to report this numerosity as an integer number, it outputs

the integer that is closest to the accumulated real-valued quantity. For small

numbers (up to 5), the reported integer is almost always accurate; but for larger

numbers errors accumulate, and the probability of reporting the wrong integer

increases, just as would be expected from a biological cognitive agent.

It follows from the previous paragraph that to calculate numerosity, Phaeaco

uses Equation 7.3 only implicitly. In contrast, when comparing two discrete

quantities, the equation is used explicitly. Specifically, to compare two

numerosity nodes with values L and S, Phaeaco executes the following iterative

algorithm.

1. The probability density functions GL(x) and GS(x) are considered. Two

initial samples SL and SS of size m each are generated from GL(x) and

GS(x), respectively, where m is a small constant (e.g., reasonable values

are between 10 and 15). At this point the reaction time RT is set to m.

2. A standard statistical decision test is applied to determine whether the

samples SL and SS originate from different populations. The test uses the

 Workspace Representations

172

known standard deviations of the populations, σL = L σ0 and σS = S σ0,

respectively, and hence the observation that the random variable

() () () ()
() mSL

SLxx

mm

SLxxz
SL

′+

−−−
=

′+′

−−−
=

0

21

22

21

σσσ

is a standard normally distributed variable, where m´ is the current size of

the samples SL and SS (initially equal to m). (Cf. also §8.2.2.)

3. If the test determines that the populations differ, the algorithm ends.

4. If the test cannot determine a difference with sufficient confidence, one

more sample value is added to each of SL and SS, the reaction time RT is

incremented by one, and the algorithm returns to step 2.

Simulation can show that the above procedure yields reaction times that

follow the general trend of RT in Welford’s formula. The constant a in Equation

7.1 is akin to the constant m in the algorithm above. Nonetheless, some words of

caution are necessary.

Welford’s formula should not be regarded as a “law” to be applied blindly in

numerosity perception. Specifically, suppose S = 1000 and L = 1001 in a display

of two boxes with the corresponding numbers of dots. It is then essentially

impossible for the human visual system to discern any difference in numerosity.

Welford’s formula predicts that an answer will be given on average in a + k·7.9

seconds, but it does not account for the fact that this answer will be random. To

address this problem, Phaeaco uses an upper bound for the number of cycles in

the algorithm above. If this upper bound is exceeded, the algorithm concludes that

the numerosity appears about equal in both cases.

The consistency of the accumulator metaphor (as implemented in Phaeaco)

with experimental results (such as Welford’s formula) should not be construed as

7.3 Numerosity 173

evidence that animal cognition also performs statistical tests of difference of two

populations. Perhaps animal cognition implements the equivalent of such tests in

an analogous, neuronal way. The consistency simply lends to Phaeaco a more

human-like, less computer-like behavior when comparing quantities.

Finally, the perception of numerosity is a complex task — definitely more

complex than examples with dots in boxes suggest. For example, it is known that

when features are spatially clustered, people systematically overestimate their

numerosity (Goldstone, 1993). Also, in idealized laboratory inputs that contain

dots, lines, etc., it is not easy to tell whether people attend to the number or the

spatial separation (density) of the counted entities. Phaeaco’s treatment of

numerosity should be seen merely as a step in the right cognitive direction.

7.4 Other visual primitives

Some of the visual primitives that are available to Phaeaco in its current

implementation were discussed in §7.1. Several other primitives that occur in

inputs more complex than a Λ-shaped object are discussed in this section.

7.4.1 Dots, points, abstract percepts, and conceptual hierarchies
If a collection of connected pixels is so physically small that even the

magnification procedure46 will fail to assign a shape to it, Phaeaco perceives the

collection as a “dot”. Dots can be as small as a single pixel, or as large as a region

approximately 5 x 5 pixels in size, but isolated pixels occasionally can be missed

altogether (“not seen”) by the retinal-level image-processing algorithms. As the

number of connected pixels that form the dot increases, the probability of missing

the collection decreases sharply, becoming practically zero for collections of four

46 Outlined in §5.1.5, and to be further discussed in §10.3.17.

 Workspace Representations

174

or more pixels. Pixels that form “dots” might even have tiny holes in them (e.g., a

few pixels missing), which also fall below Phaeaco’s discrim ation ability.

Figure 7.22: Representation of a single dot in a b

Figure 7.22 shows the representation formed for a single

Besides nodes for the box itself and the dot, there are nodes

of the dot, its x- and y-coordinates, and its numerosity (“one d

The phrasing “approximately 5 × 5 pixels in size” earlie

worthy of a generalization: no parameter in Phaeaco’s a

“constant”, hardwired into the code. All parameters tha

thresholds (such as, “Decide whether to apply the magnifi

this case) are normal distributions N (µ, σ), where µ correspo

value of a constant, and σ is very small. Decisions that depen

are probabilistic, taken after generating a random number r

N (µ, σ), outputting “yes” if r > µ, and “no” otherwise.

dot

dot size

x-coord.
y-coord.

numerosity
of dots A
in

1

ox

 dot in a visual box.

 representing the size

ot in the box”).

r in this subsection is

rchitecture is a true

t represent decision

cation procedure” in

nds to the traditional

d on such parameters

from the distribution

7.4 Other visual primitives

175

Another generalization concerns Phaeaco’s ontology of concepts. Though a

distinction was already drawn between “real” and “imaginary” percepts in §7.1,

there is a further class of abstract concepts that do not correspond to any percept

in the input. In the present context it is appropriate to mention the notion of a

“point”. A “point” is to a “dot” (and to a “barycenter”, see §7.1) roughly what the

class “mammal” is to the class “dog” (and an imagined mammal, such as

“unicorn”, would correspond to “barycenter” in this analogy). Phaeaco never

creates nodes in the Workspace to represent points, but there is a permanent node

in LTM that corresponds to the Platonic notion of a “point”, which is also

connected with the Platonic notions of “dot” and “barycenter” through two-way

links of type “is a kind of ” (from “dot” and “barycenter” to “point”) and “has

subclass” (from “point” to “dot” and “barycenter”).47 Each property of a point is

also inherited by its subclasses. For this reason, when Phaeaco determines that

something in the input is a dot and links it to the LTM concept of a dot, it

“knows” that it can create codelets for its x- and y-coordinates not because the

Platonic dot is linked explicitly to such notions, but because every dot “is a kind

of ” point, and points are known to have coordinates. Nonetheless, dots have the

additional property of size, which points (and barycenters) lack.

This, of course, is none other than the classical (Aristotelian) notion of a

hierarchy of categories, which object-oriented programming languages reinvented

and implemented as “class hierarchies”. Phaeaco implements this notion in its

conceptual network in LTM (more in chapter 9).

47 A figure depicting the represented concepts is deferred until chapter 9 where the LTM is
introduced, so as to avoid including representations of a completely different nature in the present
chapter.

 Workspace Representations

176

7.4.2 Vertices, Touches, Crosses, and K-points
When two or more lines (straight or curved) share a point, they can do so in more

complex ways than the simple “vertex” introduced in §7.1. Consider straight lines

only, for the sake of simplicity.

Figure 7.23: Three ways in which two lines can meet: a vertex, a touch-point, and a cross

The three possible ways in which two line segments can meet are shown in

Figure 7 3: the lines can meet at a ve tex; or one line can touch th other at a

“touch-p int”; or they can cross each o her at a “cross-point”. Conve iently, the

shape of the Roman letters V, T, and X serves as a mnemonic o the words

“vertex” “touch”, and “cross”. Phaeaco uses the symbols shown in Fi re 7.24 to

depict su h points in representations.

 λ

If m

can form
.2

o

,

c

λ

V vertex

Figure 7.24: Representat

ore than two line segments ar

, as shown in Figure 7.25. Al
r

t

λ

T Xtouch cross

ion of V, T, and X in Phaeaco

e involved, then more comple

l such cases will be collectivel
e

n

f

gu
x structures

y known as

7.4 Other visual primitives

177

K-points (using the shape of the letter “K”, or perhaps “komplex”, as a

mnemonic).

(a) (b) (c)

K-point K

Figure 7.25: More complex intersections: K-like (a), star-like (b), and their representation (c)

A question that arises is how to represent K-points. Clearly, each such point

admits a multitude of different “views” (see also §7.4.11) of how the lines are

related. For instance, the K-point in structure (a) in Figure 7.25 can be seen as two

touch points that coincide (the two slanted lines touching the vertical one); but

also as a vertex (formed by the two slanted lines) that lies on a vertical line; or as

two vertices that coincide (formed by a V-like and a Λ-like shape); or in a variety

of other ways. Similarly, the star-like structure (b) in the same figure suggests that

the number of possible descriptions grows exponentially with the number of lines

that participate in the formation of the point.

Phaeaco answers this question by neglecting the detailed and different ways in

which lines at K-points are related, opting to keep a summary only of the

structure. For example, structure (a) in Figure 7.25 will cause the creation of a K-

point node (c) and three λ-nodes linked to it: one for the vertical line segment, and

two for the slanted ones. The various ways in which these lines are connected at

the K-point is not important as a first representational approximation; if needed,

the structure can be examined more carefully later, and complex connections can

be “deduced” in a logical and systematic manner.

 Workspace Representations

178

Structures made of lines such as those in Figure 7.25 suggest that even a

simple touch point or a cross can be re-parsed and seen as consisting of more than

two lines. Indeed, there is a BP that exploits precisely this idea (Figure 7.26).

Figure 7.26: BP #87, necessitating a re-parsing of the intersected lines

BP #87 (Figure 7.26), is a problem that looks simple, but is tricky. At first, the

object in box I-B is perceived as an X. Similarly, there appear to be W-like, T-

like, F-like, O-like, H-like, and M-like objects in other boxes. All these are

distractors, because by registering them as “letters” we are led away from the

solution. In competition with this idea is the idea of “four lines”, which is most

typically brought into conscious focus after one pays attention to the four isolated

lines in box I-A, and is reinforced by the four lines making up the square and the

W-like shape. Seeking confirmation of this idea, one builds up subcognitive

pressure to “break up” the X-like structure (or any of the others that might require

7.4 Other visual primitives

179

re-parsing) into smaller constituent lines, so that the idea “four lines” is forced

onto it. Once one succeeds with one of those structures, it gets easier to apply the

same idea of “re-parsing” to the rest of the objects, and to do so on the right side

as well, where it yields “five lines”.

BP #87 is the example that Alexandre Linhares uses to illustrate what he calls

“multi-perception”: the ability to break down already perceived structures in order

to build new ones under some cognitive pressure (Linhares, 2000). The same idea

is part of the notion of mental fluidity, a fundamental concept in other FARG

projects such as Letter Spirit (Rehling, 2001), Copycat (Mitchell, 1990), and

Metacat (Marshall, 1999) (see also §6.2, and Hofstadter, 1995a pp. 206-208).

The constituents of V, T, X, and K-type intersection points do not have to be

straight lines. Phaeaco can represent curves, too (§7.4.5), so that instead of λ-

nodes there can be nodes representing curves that are connected with intersection

points in various ways.

Finally, intersection points are all “points” in the abstract sense, therefore they

create codelets that “want” to find their x- and y-coordinates. But in addition, this

type of point results in the measurement of angles, which is the topic of the next

subsection.

7.4.3 Angles
Angles are perceived only when an angle-measuring codelet generated by a V, T,

X, or K-point is given its turn and runs. Angles are continuous features, and as

such they have the statistical structure shown in Table 7.1. Thus, an “angle” in the

context of Phaeaco’s architecture should not be confused with the common notion

of an angle, which usually includes two lines and their point of intersection; the

latter structure corresponds better to Phaeaco’s vertices, touches, crosses, and K-

points.

 Workspace Representations

180

Phaeaco is able to perceive only angles less than 180°, which implies that a

vertex has only a single angle to be measured. But touch points and crosses have

two possible values of angles that can be measured: either an acute and an obtuse

angle, or two right angles (Figure 7.27).

Figure 7.27: Types of angles produced by intersections of lines

Phaeaco perceives both angles of touch points and crosses, and in the latter

case it registers that each angle value appears twice (Figure 7.28).

X

angle angle

Figure 7.28: Representation of the two angles of a cross, registered (i.e., linked) twice

K-points can have many perceivable angles. In such cases, it is much more

likely that Phaeaco will notice the angle formed by adjacent line segments than an

angle formed by line segments that include a third one between them.

7.4.4 Line strings
When several line segments are joined together vertex-to-vertex, or through more

complex intersections, we do not perceive merely a set of lines plus their

intersections, but a more complex shape, which appears to be more than the sum

of its parts.

7.4 Other visual primitives

181

For example, the shape shown in Figure 7.29 seems to have more properties

than its constituents perceived in isolation: it appears to consist of a “salient

frame” intersected by “minor” line segments (the latter are shown in gray in the

figure to depict the salient frame properly, but they would appear as normal black

lines in a BP). The salient frame ends at two end-points (marked on the figure)

that seem to be more amenable to perception than other end-points of the shape,

by virtue of being the two end-points of the salient frame.

Figure 7.29: A “line string” (or possibly several of them)

Overall, the perceived frame gives the impression of a “curve”, but it cannot

earn the status of a proper curve. (Proper curves are discussed in the next

subsection.) Such structures are termed “line strings” in Phaeaco, and, in contrast

to curves, they can be considered as the geometric analogue of sequences of

integers, as opposed t smooth ana tic function .

λ

line
string

Fig
o

ure 7.30: Part o
ly

λ

f the representa
s

λ

tion of a line stri
λ

ng

 Workspace Representations

182

Figure 7.30 shows — by necessity — only part of the representation of a line

string. Besides the depicted λ-nodes and the string-node at the top, there will be

nodes representing the vertices at which the line segments meet, the numerosity of

the lines, and possibly a few other percepts. However, the presence of a line string

suppresses the codelets generated by the λ-nodes, by lowering their urgency. This,

after all, is one of the main effects of a line string in a figure: its perception as a

whole “quells” the perception of the details of its constituents. Similarly, the

identification of an object as a tree in reality leads us (evidently subconsciously)

to reduce the amount of attention paid to its branches, twigs, and leaves, at the

moment the idea “tree” is accessed in our memory.

There are several qualities that line strings share with curves. For example,

they can be mentally “traced” from one end to the other, and various conclusions

can be made about the manner in which the imaginary “point” traces the frame of

the string. Also, line strings can form “bays” (as in Figure 7.29), or interior

regions (§7.4.7) by intersecting themselves. They can also form polygons, and

this is exactly how Phaeaco “understands” polygons: as closed line strings with a

single interior. Although Phaeaco does not have the notion of “polygon” as one of

its primitives, it is in a position to learn it by being repeatedly exposed to

examples of polygonal shapes.

A few other important issues must be mentioned before leaving the subject of

line strings. First, when is a line string perceived? Is a triangle a line string?

Phaeaco’s approach (which might by now be emerging as a pattern in the reader’s

mind) is that the answer is probabilistic. A low numerosity of line segments has

low probability of resulting in the perception of a line string. A triangle, in

particular, has almost zero probability of being seen as a line string, but as the

number of lines increases above four, the probability becomes significant.

7.4 Other visual primitives

183

Second, what happens in situations in which there is not a single salient line

string to be perceived, but more than one that could be seen as a candidate? The

drawing in Figure 7.31 depicts an extreme example of such a situation.

Figure 7.31: A futile exercise for computers: how many line strings are there in this “crystal”?

The last thing that can be expected from Phaeaco is that it will get tangled in a

search (of anything) that leads to an exponential explosion. Simply put, there are

no exhaustive search algorithms that have been implemented in the architecture.

Given an object such as the one depicted in Figure 7.31, Phaeaco will indeed

perceive a few line strings initially (comprising the longest line segments), but as

soon as their number exceeds four or five, it will stop “trying” to perceive and

represent any more of them explicitly. In general, as soon as the number of

anything exceeds the low end of numerosity values (§7.3), a high-level codelet

becomes activated in Phaeaco’s Workspace, monitoring the activity of other,

lower-level codelets, and suppressing them when it detects that they will attempt

to work on “one more of those ‘things’, of which we have seen many”. If, for

instance, the “many things” are dots, the high-numerosity codelet will discourage

the perception of the size and coordinates of each dot once a small sample of them

has already been perceived; in the case of line segments, their slopes, lengths,

intersections, etc., will be spared from explicit representation; and so on. In the

end, given an object such as the one in Figure 7.31, a sample of its constituents

 Workspace Representations

184

will be represented explicitly, but most will not. Instead, the focus of attention

will be shifted to other percepts that do not depend on the details of its structure,

such as its convex hull, area, elongatedness (§7.4.8), and so on.

Finally, it should be noted that line strings are kinds of “objects” in Phaeaco’s

ontology.48 If a line string stands alone, disconnected from other shapes, its node

(depicted in Figure 7.30) can replace the object-node that ordinarily would have

been constructed first.49 This is once again a general observation: identified

shapes that stand by themselves replace with their specific nodes the more general

nodes (e.g., “object”) that were inserted in the representation before the

identification occurred. If, however, the string is part of a larger structure, its node

will be connected as part of an overall object node.

7.4.5 Curves
Several of the characteristics of curves were discussed in the previous subsection

in the context of line strings. Indeed, before a curve is identified as such, it is first

identified as a line string at the retinal level; and before a conceptual

representation of a line string is made at the cognitive level, other retinal-level

routines act and identify the string as a curve. The details of these algorithms will

be given in §10.3.8. Here it suffices to say that in Phaeaco’s ontology, both curves

and line strings inherit the properties of a more abstract kind of object called a

“linear structure” (for lack of a more descriptive term). A linear structure is an

“object”, but it has a few extra properties: it can possess two end-points, can form

“bays” and interiors — thus is capable of intersecting itself — and is traceable by

a point from one end to the other.

48 But see also the first paragraph of “Curves” (§7.4.5) for a qualification of this statement.
49 Recall the construction of such a node in the discussion of the Λ-shaped object in §7.1.

7.4 Other visual primitives

185

Curves introduce a few more properties of their own. A “bay” is formed by a

piece of a curve where the points from which the curve was constructed (at the

retinal level) have a local maximum density (Figure 7.32). Bays have a certain

measure called “curvature” in differential geometry, which Phaeaco perceives at

the retinal level by fitting a circle to the bay and noticing its center.

Figure 7.32: Construction of “center of curvature” in two “bays” of a curve (retinal level)

Figure 7.32 shows the way “centers of curvature” are constructed: by drawing

perpendiculars to near-tangent lines of the curve, and registering the approximate

point where these perpendiculars meet. Although the center is known only at the

retinal level, the radius of the circle provides a measure of curvature at the

cognitive level; so the latter “knows” how sharp the bay of a curve is without

having access to the actual number, or to the computational method by which this

measure was found. The cognitive level can only report that a curve is “sharp”,

“normal”, “blunt”, and so on, i.e., in qualitative terms.

Once the circle and the center of curvature are known, the tangent line at any

point of the curve near the approximating circle can also be computed. Thus, the

cognitive level is capable of “imagining” tangent lines to a curve, if necessary.

Nonetheless, not all curves are well-behaved, as the discussion thus far might

imply. A spiral, for example, has no bays. Phaeaco is at a loss when presented

with a spiral, being unable to perceive anything further than “there is a curve”,

possibly including its endpoints and barycenter (every curve has one, being an

 Workspace Representations

186

“object”). Consequently, BP #16 (see Appendix A), which depends on a property

of spirals (their clockwise or counter-clockwise tracing), is unapproachable by

Phaeaco at present. Another concept unknown to Phaeaco in its current

implementation is the “direction” of a bay (if the bay were a “satellite dish” — a

parabolic mirror — it would to the direction of a ”).

curve

ba

Figure 7.33: Representatio

A simplified representati

omitting several nodes (suc

numerosity of the bays, the c

cluttering the drawing. As u

perceived and represented i

before the activation drops to

A circle is a special kin

and the only true shape (oth

routines of the architectu

programming code at the ret

ellipses in general (oriented
 be turned

bay

center of
curvature

n of a curve with two bays and their

on of a curve with two bays is

h as the coordinates of the ce

onvex hull of the curve, its ba

sual, not all of the available p

n a single run of the image-

 a minimum and activity cease

d of curve that Phaeaco recog

er than points and lines) that

re. This means that there

inal level charged with identify

in any direction). The particula
“satellite

y

center of
curvature
 centers of curvature

 shown in Figure 7.33,

nters of curvature, the

rycenter, etc.) to avoid

ercepts are likely to be

analysis routines (i.e.,

s in the Workspace).

nizes relatively easily,

is “hardwired” into the

are specific lines of

ing not just circles, but

rs of the algorithm are

7.4 Other visual primitives

187

given in §10.3.12. The computational method of representing curves at the retinal

level (through piecewise smooth, parametric B-splines) will be explained in

§10.3.8.

7.4.6 Concavities and missing area
In §5.1.3, the concept of concave objects was introduced in the context of BP #4

(Figure 5.7), along with the concept of a convex hull. By “subtracting” a filled

version of the actual object (if it is not already filled) from its convex hull,

Phaeaco is able to perceive the concavities of the object (Figure 7.34a). Besides

concavities, the same algorithm discovers other objects inside the original object

if it is outlined (Figure 7.34b), or “holes” if it is filled (Figure 7.34c).

(a) (b) (c)

Figure 7.34: Concavities (a), objects inside outlined object (b), and holes in filled object (c)

In addition to identifying such objects and considering them in their own

right, Phaeaco is able to obtain an overall perception of “how much is missing”

from an object. There is no BP in Bongard’s collection based on such a percept,

but it is conceivable that a BP could be designed in which the objects on the left

side are missing a large portion of their convex hulls (in any of the three ways

depicted in Figure 7.34), whereas the objects on the right side are missing

considerably less of their convex hulls. Phaeaco represents the percept of

“missing quantity” with a single feature node of a continuous nature, depicted in

 Workspace Representations

188

Figure 7.35. However, this percept is not one of those that are readily available in

a first look at the object.

missing
quantity

Figure 7.35: Representation of “missing quantity” of an object

In addition to sensing the missing quantity, Phaeaco can also represent

explicitly (as separate objects) all the cases shown in Figure 7.34. Concavities of

case (a) are imaginary objects (§5.1.3), whereas objects such as those depicted in

cases (b) and (c) are real, but “inside” the larger object. The notion of “inside” is

the first mention of a relation between objects in the present chapter. This relation

will be examined in greater detail in the following subsection.

7.4.7 Interiors
BP #15, a typical problem that distinguishes between objects that have an interior

region and those that lack one, was mentioned in chapter 5 (Figure 5.9) as one of

the BP’s that Phaeaco manages to solve. However, BP #15 appears to be making

an “absolutist” distinction between objects that have a completely closed interior

and ones in which a narrow “isthmus” connecting the interior to the exterior is

sufficient to categorize the objects as “lacking an interior”. But, as is the case with

most concepts, there can be shades of gray even in a concept as seemingly clear-

cut as the existence of an interior, as Figure 7.36 suggests.

7.4 Other visual primitives

189

Figure 7.36: Gradations in concept “interior”

Phaeaco detects the “openness” of an interior. For example, on a scale of real

numbers from 0 to 1, the leftmost object depicted in Figure 7.36 has an “interior

openness value” of 0. As one moves from left to right, the other objects would be

assigned larger values, with 1 reserved for a straight line segment. After all, these

shapes can be seen as abstractions of real-life objects, such as flasks, phials,

vases, pots, bowls, etc., all suitable for storing liquids in their interiors. Phaeaco

measures the openness of an interior at the retinal level. First, the suggestion of

the existence of such a region is given by the procedure mentioned in the context

of concavities (§7.4.6). Once such a region is identified, a few points in it are

sampled, as shown in Figure 7.37.

“escaping”
rays

Figure 7.37: Measurement of the openness of an interior region

A sampled random point is shown in the interior of the object in Figure 7.37.

A number of “rays” emanate from this point at fixed angles. A few of these rays

manage to “escape” to the exterior. By dividing the number of rays that escape by

the total number of rays, we obtain a first approximation of how open or closed

the object is. By repeatedly sampling a few more points and averaging the results,

 Workspace Representations

190

Phaeaco makes the approximation reliable. Whereas these computations take

place at the retinal level, the cognitive level can only report the magnitude of

openness of an interior region qualitatively. Naturally, an object can have more

than one interior (e.g., an entirely closed region and a few concavities, an in

Figure 7.34a), and the openness of each can be represented as in Figure 7.38.

interior interior+ – –+

Figure 7.38: Representation of the “openness of interior” of an object with two interiors

It is also important to mention that although the notion “interior” is perceived

as a value in a continuous range, Phaeaco can make a sharp distinction between

completely closed interiors and all the rest, if the need arises (as in BP #15).

The existence of interior re ions entails the possibility of one object being

inside another. But just as the n tio “ ter r” admits shades of gray, similarly,

the notion “inside” can be blurry as ho n i Figure 7.39.

Figure 7.39: The

There are four regions label

larger C-shaped outlined object
g

o

,

1

rela

ed

. Re
n

 s

3

tion “

1, 2

gio
in

w

2

insid

, 3, a

n 3 i
io

n

4

e” is not always clear-cut

nd 4 in Figure 7.39. Region 1 is the

s the “bay”, or concavity of region 1

7.4 Other visual primitives

191

— an imaginary object in Phaeaco’s perception. Region 2 is clearly inside the bay

of region 1, but region 4 is not easily classified as being inside or outside, and by

moving it slightly to the left or right we can vary the degree of “inside-ness”. But

disregarding for the moment the uncertainty of the inside-ness of region 4, the

discussion that follows explains the representations of regions 1, 2, and 3.

First, it is necessary to introduce a new representational structure, one that

applies only when relations are present. Suppose we want to represent the fact that

region 2 is inside (or “is engulfed by”) region 1 (always using Figure 7.39 as a

reference point). This is represented as shown in Figure 7.40.

Figure 7.40: Partial representation of relation “object 2 is inside object 1”

There are two object nodes in Figure 7.40, labeled50 “1” and “2”. Object 2 is

linked to object 1 by an arrow pointing from 2 to 1, as in previous examples, but

this time there is a black dot on this arrow, and a line leads from this dot to the

elongated node labeled “is inside”. Relations will be depicted with elongated

nodes from now on, although they do not differ essentially from other nodes.

Figure 7.40 is strongly reminiscent of drawings of relations in GEB (§6.2,

Figure 6.4) and the Slipnet (Figure 6.7). Nonetheless, the similarity is superficial.

50 As usual, labels are present only for our convenience; in Phaeaco’s representations, nodes
correspond to objects in the input by virtue of their associated retinal-level information.

1

2

is inside

 Workspace Representations

192

Later, when Phaeaco’s LTM is explained (in chapter 9), the similarity will be

substantial. In Phaeaco’s Workspace, however, the arrows that connect nodes in

relations are mere “cables”: they do not shrink according to the activation of the

relational node, which is the most essentia characteristic in the Slipnet and in

Phaeaco’s LTM; instead, they simply denote what is related to what, and how.

The drawing in Figure 7.40 depicts the elation only partially. Every relation

is a two-way concept: if one thing is rela d to another, then the latter is also

related to the former, in an inverse type of re ation. This is shown in Figure 7.41.

Figure 7.41: Still partial representation of

Note the dashed line connecting the two

these two relations are not independent; th

reason, the relation “is inside” must be d

“know” what its twin relation is, and will de

The imaginary object 3 (the concavity

representation. This is not mandatory; it is p

been perceived explicitly. In that case, Figu

to objects 1 and 2. What cannot be shown i

between these various connections. Specific

bay (object 3), and so it bears the same de

contains
l

r

te

l

1

is inside
2

relation “object 2 is inside object 1”

 small black dots. Its meaning is that

ey are like twin siblings. If, for some

estroyed in the future, Phaeaco will

stroy that as well.

of object 1) can also be added in the

ossible if the imaginary concavity has

re 7.42 shows how object 3 is related

n the figure is the difference in degree

ally, object 2 is completely inside the

gree of “inside-ness” to object 3 as it

7.4 Other visual primitives

193

does to object 1 (i.e., “completely inside”). However, object 3 is not exactly

“completely inside” object 1 (because the tw objects touch each other at the right

side of their borders), and so the “insid -ness” of object 3 in object 1 is

quantitatively different from the previou two cases (“less than completely

inside”). The degree of strength of a relatio is stored in the structure represented

by the small black d t on the arrow that lin s the nodes, and is implemented as a

real value in the ran e from 0 to 1. For example, a value near 0.5 would represent

the inside-ness of ob ect 4 with respect to ob ect 1 in Figure 7.39.

Figure 7.42: Full representation of rel

Naturally, a relation “outside” also exist

described above. The only difference is tha

relation “inside” has already been primed

Suppose the input shows an object inside a

and “contains” are formed in the Workspa

(like all other nodes in Workspace rep

corresponding “Platonic” nodes in LTM, w

in these figures for simplicity. Thus the
o

e

s

n

k

j

1

is inside

contains
2

o

g

j

3

ations among objects 1, 2 and 3

s, with very similar properties to those

t “outside” is not perceived unless the

 in LTM. This happens as follows.

nother object. Then nodes for “inside”

ce, as already described. These nodes

resentations) are connected to their

ith connections that have been omitted

LTM node “inside” is primed, and

 Workspace Representations

194

because “inside” is related to “outside” through the concept “opposite”, the

concept “outside” receives some activation, too. This increases the urgency of

Workspace codelets waiting to notice objects outside one another, and when such

codelets run, the relation “outside” is explicitly added to the representation.

7.4.8 Elongatedness
At first thought, the elongatedness of an object seems to be one more continuous

feature like the ones discussed so far: a straight line is perfectly elongated, and a

circle perfectly round. The reality is more complex, however.

½ τ

νy

§ν
Φαιάκων

σος

Figure 7.43: What is the value of elongatedness of this shape?

The object in Figure 7.43 does not seem to admit a single numerical value as a

description of its elongatedness: it is bulky at the top, narrower at the bottom, and

has a varying degree of thickness along what appears to be its length. Even its

convex hull seems to suffer from the same indescribability of elongatedness.

Nonetheless, the phrase “what appears to be [the] length [of the object]” was

just used, and this notion is not devoid of content. If there is some way to define

an internal linear frame, or “skeleton” for this object, then perhaps a value of

elongatedness can be assigned along selected points of this skeleton. The

7.4 Other visual primitives

195

sequence of these values at each point as a whole can be the percept of

elongatedness.

Indeed, this is the approach taken in Phaeaco. In the next subsection, the

derivation of an internal skeleton for an object will be described. The skeleton,

being a “linear structure” (§7.4.5), can be traced by a point along its length, and

the elongatedness can be estimated at discrete intervals through an algorithm that

is based on another one that examines filled regions (§10.3.6). What is obtained

then is a sequence of values (real numbers in [0, 1]) that can be stored in

association with the skeleton. Thus, elongatedness is a feature that has a “vector”

nature, rather than a scalar one. The elongatedness vector can be given by means

of a function f (x), which is defined not by a mathematical formula but by the pairs

of coordinates of its points, where x varies discretely in [0, 1], and f yields values

also in [0, 1] (where 0 = “low” and 1 = “high” elongatedness).

Reality can be both more complex and more simple than the object in Figure

7.43. For example, the skeleton of an object can be branching, in which case the

vector of elongatedness is defined on each branch. But most BP’s present us with

simpler objects having a linear skeleton and a constant elongatedness along that

skeleton. In this case, elongatedness reduces to a scalar value. Figure 7.44 shows

what the representation looks like in such special cases.

elongatedness

Figure 7.44: Representation of elongatedness in the special case of a scalar value

 Workspace Representations

196

Many objects in BP’s are circles and regular polygons, with an elongatedness

of exactly zero (their skeleton is a point). But Phaeaco was not designed with the

BP’s as its ultimate and limiting domain, so it cannot rely on simplifying

assumptions, such as that the elongatedness is either zero or nonzero but constant.

7.4.9 Endoskeleton and exoskeleton
In the biological world, some animals (e.g., the vertebrates) have an internal

structure of bones and cartilage called an “endoskeleton”; and others (e.g., the

crustaceans) have an external supporting structure, the “exoskeleton”. Similarly,

one can identify two analogous structures in visual objects. The previous

subsection offered a raison d’être for the notion of the endoskeleton of an object,

an example of which is shown in Figure 7.45.

Figure 7.45: The endoskeleton (internal line) and exoskeleton (outline) of an irregular object

The endoskeleton is a set of points that stay as far away from the borders of

the object as possible. Its computation is deferred to chapter 10, because it is part

of the initial stages of visual analysis at the retinal level.

The exoskeleton of an outlined object is merely its outline; and if the object is

filled, its exoskeleton (also identified at the retinal level) is its set of border pixels.

7.4 Other visual primitives

197

Of the two structures, the endoskeleton somehow appears to be of more

fundamental importance: it is what remains if we stay with the “bare bones” of the

object and abstract from it a single line, or a set of branching lines. Although

abstracting objects by their endoskeletons is not an operation demanded very

frequently in BP’s, it is very important in general, given complex shapes.

Figure 7.46: A complex figure, and its superimposed endoskeleton as computed by Phaeaco

An example of the utility of finding the endoskeleton is shown in Figure 7.46.

Analyzing the structure of the endoskeleton yields useful information about the

parts comprising the object. Phaeaco processes the endoskeleton as it would

process any other linear structure. Figure 7.47 shows how Phaeaco depicts the fact

that an endoskeleton has been computed and incorporated into a representation.

endoskeleton

Figure 7.47: Simplified representation of endoskeleton

 Workspace Representations

198

However, it must be noted that Figure 7.47 has been simplified: ordinarily, an

entire network of nodes representing the endoskeleton structure “hangs” under the

single endoskeleton node, just as for every linear structure (e.g., a line string).

In contrast, the exoskeleton of a figure does not require an explicit special

node for its representation. For example, the exoskeleton of an outlined triangle is

the lines that comprise the triangle (see the representation of the Λ-shaped object

in Figure 7.15 for a similar example); and if the triangle is filled, its representation

is the same, except that its “texture” node has value “filled”.

7.4.10 Equality, for all
Suppose the input is one of the boxes that belong to the left side of BP #56

(§5.1.4, Figure 5.10), the solution of which is: “all objects have similar texture”.

A sample box is given below.

Figure 7.48: One of the boxes of BP #56

A question that must be answered concerns the representation of the phrase

“all objects have similar texture”. There are two words in this phrase that cannot

be represented by any type of node discussed so far: “similar” and “all”.

The word “similar” can be used in English in a variety of situations that are

not very similar to the way it is used in the above phrase. For example, two

election campaigns can be judged as “similar”, meaning that people can see the

analogous elements among the two campaigns. Or, a model house made of

cardboard can be said to be similar to a real house, which need not even exist. In

7.4 Other visual primitives

199

this case, similarity refers to near-equality that results from bringing the miniature

and full-size versions of the two objects to the same scale. In the phrase pertaining

to BP #56, the word “similar” refers to equality, or sameness, of textures. Phaeaco

can use the notion “similar” in the following cases:

• for absolute equality in values of a discrete feature (e.g., same texture);

• for approximate equality in values of a continuous feature (e.g., same size);

• for approximate equality in numerosity (“same number of ”), which reduces to

absolute equality for low-numerosity values (e.g., up to about five; see §7.3);

• for similarity of shape, if one object can become identical to another by scale

change, rotation, or translation (e.g., a small square and a large diamond);

• for identity of relations (e.g., two or more pairs of objects, each pair consisting

of a circle inside a triangle).

If the equality concerns the value of a feature or numerosity (as in the first

three cases above), then representations, as they have been presented so far,

possess a property that hints at the existence of the equality.

Figure 7.49: Implicit representation of equality (four objects with the same texture)

For example, Figure 7.49 shows four object nodes (representing the four

objects of Figure 7.48) sharing the same texture value (presumably “outlined”).

 Workspace Representations

200

That these objects have equal texture can be inferred from the four arrows that

point to the same node. Indeed, the texture node stores internally the number of

nodes that have been lin ed to it, so in a sense it “knows” that there are several

objects sharing this text e (it maintains an “internal numerosity” value). But this

knowledge is implicit, a Phaeaco can also represent it explicitly, as follows.

 equality

Figure 7.50

An oval (relational)

This node is connected

texture node with a dif

figure). A proposition t

have outlined texture”.51

Under what circum

relation in the manner d

stage of visual processi

that receive a relatively

codelet that “lurks” in th

will be selected and r

51 This of course is not the
nodes can derive the proposit
k

ur

nd

=

: Explicit representation of equality of texture value

node representing equality has been added to Figure 7.50.

to the four object nodes with one type of link, and to the

ferent type of link (the arrow is shown in gray in the

hat can be derived from this relation is: “Some objects

stances is an explicit equality node created? Adding a

epicted in Figure 7.50 cannot happen during the holistic

ng (§5.1.1), but during the analytic stage, feature nodes

 large number of links increase the probability that a

e Coderack — watching for such structural curiosities —

un. The higher the number of links, the higher the

 only possible proposition. A more elaborate traversal of the linked
ion “Four objects have outlined texture”.

7.4 Other visual primitives

201

probability for this codelet to be activated. This codelet is analogous to a type of

agent referred to as a “sameness detector” (“Sam”) in GEB (Hofstadter, 1979, p.

650). After the equality codelet runs and completes its work, it adds a structure as

shown in Figure 7.50. What has been omitted from the figure is that the equality

node is accessible (linked) from the visual-box node that stands at the “top” of the

entire structure.

Equality nodes are a special case of a category of relational nodes called

“grouping nodes”. Relations such as “is inside” and “is outside” (§7.4.7) also

allow the formation of groups by inducing a dichotomy between things inside and

things outside. In reality it is hard to find relations that cannot group their

referents,52 so most relations are of the grouping kind.

Nonetheless, the proposition “Some objects have outlined texture” differs

from “All objects have similar texture” in two ways: we still do not know how to

represent “all” or “generally similar” (with no reference to a specific value).

The concept of “all” follows naturally from what we have seen so far. Once a

grouping node is established, it places a high-urgency codelet on the Coderack

that wants to examine precisely whether the grouped items are the only ones that

can be thus grouped. As was mentioned earlier, the equality node is connected to

some “top” inclusive node (the visual box in the example of Figure 7.48).

Therefore, if there are no more nodes of the same type (object nodes, in our

example) as the grouped ones under the inclusive top node, the codelet concludes

that “all” entities that exist have been grouped, and adds the special “for-all” node

into the structure, as shown in Figure 7.51. The corresponding proposition that

can be derived from this structure is: “All objects have outlined texture”.

52 “Successor” and “predecessor” in sequential structures could be non-grouping relations.

 Workspace Representations

202

Figure 7.51 introduces two new elements. First, a for-all node belongs to yet

another type of node, not encountered so far, the “quantifier” (hence the different

— hexagonal — shape for its depiction). At present, for-all is the only quantifier

implemented in Phaeaco’s architecture. (The other important quantifier, “there

exists”, is implicitly understood every time a representational node exists in a

structure.) The second new element in this figure is the LTM node “Platonic

object” (depicted with a dashed outline). This is necessary in order to emphasize

that the notion “object” in the proposition “all objects have outlined texture”

refers not to any particular obje among the four ones that have been created in

Workspace, but abstractly to ob cts in the visual box. The type of the quantified

entity in this proposition is “obje t”, and its scope is “those in the visual box”.

Figure 7.51: Represen

It is interesting to note that

in Figure 7.51 and the logical

where Bo is the set of all objects

the search algorithm RF4, suc

LTM

∀ all

ct

je

c

=

tation of “all objects have outlined texture”

there is an obvious analogy between the structure

expression “∀x, x ∈Bo: texture(x) = outlined ”,

 in the visual box. In chapter 4, in the context of

h logical expressions had been singled out as

7.4 Other visual primitives

203

fundamentally wrong for serving as representations of propositions. Could it be

that Phaeaco has been caught in the same logic trap as RF4?

Closer examination, however, reveals that the representational similarity is

merely superficial. Firstly, Phaeaco is not spoon-fed such propositions by a

programmer, but discovers them after laboriously examining the visual input, as

well as its own representations. Secondly, the node that represents an object in

Phaeaco is grounded (via a link to retinal-level information) to an object that

belongs to the external world, contrary to a symbol such as “x”; the same is true

for the texture node (grounded to the white color of the input object), contrary to a

predicate of the form texture(x) = outlined; and so on. Finally, Phaeaco does not

include a calculus to perform logical derivations, or to manipulate formulas and

add “theorems” and “corollaries” to the propositions it discovers; it merely “sees”

some simple ideas that happen to be describable by what millennia of human

inquiry into cognition has distilled into what is known as predicate calculus.

Traditionally, it has been asserted that the distilled formulas of logic are

fundamental and real, existing in the human brain — perhaps in some module

specializing in logical reasoning. In contrast, the approach taken by Phaeaco is

that distilled logic formulas exist only in those minds that have been inculcated

with the so-called “Western” edifice of scientific knowledge and mathematical

reasoning. The edifice is not “wrong” — it is truly beautiful; but the formulaic

calculus of logic comprises not its foundations, but the elaborate and fragile

furniture of its most recently constructed floors.

However, this supposition does not imply that mathematical logic is the

contingent outcome of a random path of human thought, led either by some

cultures, such as the Greeks, or by some individuals, such as George Boole, as

some authors have recently suggested (e.g., Lakoff and Núñez, 2000, p. 118).

 Workspace Representations

204

Human thought converged to the formalization of mathematical logic for a good

reason: human cognition, together with the rest of our physical makeup, reflects

— in an abstract way — the properties of the world in which we evolved. For

example, we possess eyes seeing in the visible range of the electromagnetic

spectrum because photons that arrive on the surface of our planet belong mostly

to that part of the spectrum; we possess lungs to inhale oxygen and blood to

circulate it in our body because oxygen, alone among all elements, makes

combustion possible; and so on. Likewise, it seems reasonable to assume that we

can count objects because objects and numbers exist in the world, rather than that

our minds conjure them up; that we can perceive regularities and patterns, such as

straight lines, circles, symmetries, and so on, because such regularities are part of

our environment, and that our spe ies — occupying the “intelligence niche” —

evolved to perceive such regula ties because doing so gave us a survival

advantage. In contrast, it seems p rticularly arrogant to claim that mathematics

does not exist in the external world but instead that we humans invented it.

Figure 7.52: Representa

LTM

∀
c

ri

a

,

=

tion of “all objects have similar texture”

7.4 Other visual primitives

205

Finally, we can now proceed to the representation of the more abstract

proposition “all objects have similar texture”. The representation is shown in

Figure 7.52, and involves one extra step of abstraction: the arrow that previously

connected the node of equality with the outlined texture node in Workspace now

points to the Platonic node “texture” in LTM. All else is identical to the structure

in Figure 7.51.

7.4.11 Necker views
A Necker cube is a well-known object in psychology, first noted in 1832 by Swiss

crystallographer Louis Albert Necker. Our perception of its structure constantly

flips back and forth between the two possible ways to perceive the three-

dimensional arrangement of its sides and edges (Figure 7.53).

(a) (b)

Figure 7.53: Necker cube (a), and two possible ways to perceive it in three dimensions (b)

What is interesting about the Necker cube is that we feel there is no way to

entertain simultaneously its two “conflicting” representations in our minds: we

may focus on one view or the other, but not on both at the same time.

The Necker cube situation appears often in Phaeaco’s input, even in drawings

not nearly as complex as a Necker cube. Figure 7.54, for example, shows a very

simple yet ambiguous drawing: is it a short line segment, or a very narrow filled

rectangle? How is such an object to be represented? Should one representation

 Workspace Representations

206

(e.g., “straight line segment”) be favored over the other? Should the disfavored

representation be forgotten and deleted from Workspace? But what if the context

changes, necessitating the “other” representation? Is the forgotten representation

to be constructed once again, as if the system has never seen it before, forgetting

the first (original) representation this time?

Figure 7.54: A simple ambiguous drawing: line segment or filled rectangle?

Phaeaco answers this dilemma by keeping the two representations in parallel

(assuming it reaches both at some point) by means of a special representational

element: a “Necker view node”, shown in Figure 7 5.

Necker
view

Figure 7.55: A Necker view rep

The important function of a Necker view n

whenever an operation must be performed on the

links connected to the node must be followed, hen

assumed. (Which view will be assumed is a matt

example, the matching and statistical updating of
.5

λ

resentation

ode in a representation is that

 representation, one of the two

ce one of the two views must be

er of contextual pressures.) For

representations is introduced in

7.4 Other visual primitives

207

the next chapter; if the matched or updated representation contains a Necker view

node, then the algorithm that performs the matching, updating, etc., will be forced

to “choose” one of the two views in order to proceed.

Any number of views can coexist under a Necker view node, which is one of

the possible ways to represent the idea of “or”, or “alternatives”. In a way, the

Necker view node acts as if it were not present, because after one of its views has

been assumed, the alternatives become temporarily inaccessible. Nonetheless, the

system is aware that alternative views exist, so that given a suitable contextual

pressure it can switch to one of the alternative views without reconstructing it

from primitives.

7.5 Some general remarks on visual primitives

Confronted with the BP domain, either as a solver or a designer of problems, one

at first develops the impression that the variety of possible ideas that can be

expressed in BP’s is endless — quite literally infinite. Another possibility is that

the set of available BP’s, though not literally infinite, is so vast that any attempt to

describe it thoroughly with a collection of examples is destined to fail. However,

it was mentioned in an earlier chapter (near the end of §5.1.4) that a set of

approximately 10,000 different BP’s could include the ideas of all but the most

creative designers. Which view is right?

The notion of a true infinity of BP’s can be easily shown to be false, assuming

the discrete nature of the input.53 Suppose each of the k boxes of a problem has

dimensions m × n (for example, usually k = 12 in BP’s, and m = n = 100 in

53 “Continuous” input can be discretized to any desired degree of accuracy, hence the argument
presented here includes continuity as its limiting case; in addition, it is doubtful that continuity
exists in the physical world in any way other than as an idea in human minds.

 Workspace Representations

208

Phaeaco’s input). Then there is a maximum of 2k·m·n possible black-and-white

“BP’s” that can exist, and that is the end of the infinity hypothesis.

Still, using Phaeaco’s default assignment to k, m, and n, the number 2k·m·n (i.e.,

2120,000) is vastly larger than the total number of elementary particles in the

observable universe. If we wanted to keep a record of all possible BP’s, the entire

known universe would not suffice. Could there be any validity to the notion that

the number of interesting BP’s is so large that it cannot be adequately

approximated with any manageable collection of examples?

There are two ways in which a designer can come up with interesting new

BP’s: by discovering new visual primitives or by defining new concepts using

known primitives.

The second method indeed leads to a large collection of BP’s, but inevitably,

an observer of the collection will find most such problems esoteric. For example,

given the concept of a triangle, one may define a multitude of “centers” associated

with it; some of them are well known (e.g., barycenter, incenter, circumcenter,

orthocenter); but other centers are little known to the non-expert (excenters, nine-

point center, Nagel point, symmedian point, Fermat point, Gergonne point,

Morley centers, Hofstadter one and zero points, and many more). One may then

consider lines that pass through such, often collinear centers (e.g., the Euler line),

circles defined by them, their points of intersections that define further triangles,

and so on. In this way, an entire “geometry of the triangle” has been developed

(e.g., Kimberling, 1998). But now consider a BP that includes a single triangle in

each of its 12 boxes, the solution of which is as follows: on the left, the Euler line

of each triangle is vertical; whereas on the right, the Euler line is horizontal. This

BP would be completely unapproachable by the vast majority of people; and even

the few experts who have dedicated entire decades to the study of triangle

7.5 Some general remarks on visual primitives

209

geometry would need to be given some hint that this BP is relevant to their area of

expertise before they could adopt the necessary approach.

The Euler-line BP that was just proposed is an extreme example, but it helps

to appreciate the idea that the method of making definitions of exotic concepts

does not result in universally acceptable BP’s. What remains as a possibility is the

discovery of new primitives, which brings us to the question of approximately

how many primitives exist. It should be noted that some notions counted as

“primitives” in this chapter are not primitive in a mathematical, “axiomatic”

sense. For instance, the midpoint of a line segment could be defined on the basis

of its two endpoints, and the equality of lengths of two subsegments of the given

segment. But it is “primitive enough”, in the sense that when people perceive it

they do not think of it as definable in terms of other notions they already know.

All such notions are considered “primitive” in the present text, even if they entail

some redundancy.

A supposition in this thesis is that the set of visual primitives that can be

expressed in BP’s is large — probably of the order of a few hundred. The

magnitude of this set generates the feeling that the possibilities in the domain are

endless. Since each BP usually does not depict exactly one primitive but is an

elaboration, or a combination of a few, the number of BP’s that are original

enough to surprise the solver is, perhaps, of the order of a few thousand. But

beyond some point there is bound to be repetition, recycling, and recombination

of old ideas, once the set of all primitives is exhausted.

That the set of primitives is large explains why no attempt is made in the

present thesis to list them exhaustively. For many entries on such a list, the

decision of whether they constitute primitives or not would be subjective. In

addition, the magnitude of this set also suggests that an attempt to implement its

 Workspace Representations

210

members exhaustively would be the wrong approach. Instead, only a few

representative members of each category of primitives (features, objects,

relations, and quantifiers) have been selected and implemented in the current

version of Phaeaco.

7.6 Summary

The principles by which Phaeaco constructs representations were introduced in

this chapter. Representations consist of nodes linked to each other in a structured,

nearly hierarchical manner that reflects the corresponding hierarchy of levels of

detail of the represented object. Some representational characteristics, such as the

notion of activation, as well as some representational primitives, such as the

numerosity of objects, were discussed in detail. Other primitives were briefly

introduced, broadly categorized as objects, features, relations, and quantifiers. But

just as data structures are not very attractive in computer programming unless

supplied with operations that act on them, so representational structures are not

very useful in a cognitive architecture unless accompanied by a “calculus” that

operates on them in some useful way. The next chapter addresses this issue.

CHAPTER EIGHT

Visual Patterns
8 Visual Patterns

The representations introduced in the previous chapter become “functional” in the

present one. First, the motivational problem of forming “lumps” (groups) of

similar items within a population is presented. Next, a general matching method is

offered that, given any two items represented as discussed in chapter 7, returns a

real number that stands for the “perceptual difference” between the items. This

difference is then used as a metric to solve the problem of “lumping” by assigning

each item to some group, or category. The number and identity of the formed

categories depends on contextual pressures. Finally, the formation of a visual

pattern in each such category is discussed.

8.1 Motivation

Consider the three examples of visual input given in Figure 8.1.

(a) (b) (c)

Figure 8.1: Three examples of “lumping”: by location (a), by feature value (b), and by shape (c)

 211

 Visual Patterns

212

When presented with one of the examples shown in Figure 8.1, we can place

the objects into groups by “lumping” them together. In some cases this lumping is

purely automatic and unavoidable, as in Figure 8.1a, in which the locations of the

objects (dots) cause us to see two groups. In other cases, a minimum of effort is

required, as in Figure 8.1b, where two groups are formed according to the size of

the objects (large and small squares). Interestingly, the ease of group separation

can be modulated by varying the “statistical distance” between the two samples,

which depends both on the absolute difference of the two means (mean area of

large and small squares), and on the variance of each sample (the larger the

variance, the harder it is to identify the groups). Finally, Figure 8.1c gives an

example of group formation based on the shape of the objects (squares and

circles). In this case it is the structural properties of the given items that matter.

The problem of group formation appears to be fundamental in perception. In

§8.4 it will be argued that this is the most essential problem cognitive agents must

solve before they can “understand” anything at all in their environment. Only by

solving this problem we can perceive “objects” in the world (more in §8.4; for

now, note that we see “two swarms of bees” in Figure 8.1a, rather than “bees” in

random locations). At the core of the solution of this problem must be some

procedure that allows us to compare the given items and determine how different,

or “distant” (either literally or abstractly) they are. The procedure, called “pattern-

matching” in the present text, is part of a more elaborate algorithm that allows us

to form both mental categories of items and a summary representation for each

category: a “visual pattern” (§8.3). Once a visual pattern is formed, we are able to

determine with some confidence how plausible it is that a given new item belongs

to the category. It will be argued at the end of this chapter that pattern-matching

8.2 Pattern-matching 213

stands at the foundation of a more general mechanism that Hofstadter calls

“analogy-making”.

How can a system like Phaeaco, which exists in the realm of “programmed

cognition” (§4.3, see also Figure 4.9), achieve the “same thing” as we do, i.e.,

lump items into groups? The rest of this chapter explains Phaeaco’s approach.

8.2 Pattern-matching

The algorithm presented in this section accepts any two representations (as

described in chapter 7), and outputs a real number in the interval [0, 1] that

indicates how well the two representations “match”, i.e., how similar they are. It

is now appropriate to use the term “exemplar” to refer to the structures of chapter

7, and to reserve the term “representation” for something that is either an

exemplar or a “pattern”. The latter term is introduced in §8.3 to refer to

representations that are statistical summaries of exemplars. Thus, “representation

matching” would be a more suitable term for the main algorithm of the present

chapter, because its inputs are representations in general (either exemplars or

patterns). However, the term “pattern-matching” is easier to understand because it

has been used extensively in the literature, so it will be used instead.

An issue that must be addressed before the algorithm is presented is what

triggers the algorithm to run. When are two representations matched against each

other? The answer is that the algorithm is activated probabilistically when two or

more representations exist under the same context; and the larger the number of

items, the higher the probability that the algorithm will run. For example, a BP

side contains six boxes, which is a number large enough to result in a very high

probability that the algorithm will run with pairs of representations of boxes as

 Visual Patterns

214

input.54 Also, any of the examples (a)–(c) of Figure 8.1 will almost certainly cause

the algorithm to run. Even if there are only two items in a group, they can be

matched, but in the absence of any pressure there is a nonzero probability that this

might not happen. The probabilistic start of the algorithm is implemented with a

codelet that monitors the appearance of a high numerosity of “objects” — the

same codelet that was mentioned in the context of the for-all quantifier (§7.4.10).

The description of the algorithm that follows proceeds in a bottom-up fashion:

it begins with feature nodes, and later continues with entire structures of the two

matched representations.

8.2.1 Matching feature nodes
Suppose two feature nodes f1 and f2 of the same type (excluding numerosity) are

given. Suppose further that the field “N” of each of f1 and f2 (described as

“number of observations” in Table 7.1) has value 1 (i.e., each of the two features

has been seen only once, as is the case of any exemplar representation built from a

single observation, as described in chapter 7). Then the distance between f1 and f2

is the absolute value of the difference between their corresponding fields labeled

as “mean” (also described as “average value of sample data” in Table 7.1),

divided by the maximum value a feature of this type can acquire. The last

operation has a scaling effect, so that the distance is always a number in [0, 1].

For example, if the feature type is “length”, the maximum value is the length of

the main diagonal of the visual box; if the feature type is “angle”, the maximum

value is 180°; if it is “slope”, the maximum value is 100%; in general, each

primitive feature type “knows” what its maximum allowed value is. The result is

54 Note that in this case Phaeaco does not rely on probabilities, “knowing” that the representations
of the six boxes must be matched; in other words, the algorithm runs with probability 1, because
Phaeaco “knows” what a Bongard problem is and what to do with it.

8.2 Pattern-matching 215

summarized in Equation 8.1, where and are the values of the field “mean” of

f and f , respectively, and 1 2 is the maximum possible value of feature f.

Equation 8.1: Distance d of two features with sample size 1 (two exemplars)

If the field “N” of feature f is equal to 1, but the field “N” of feature f is

greater than 1 (i.e., f is part of a pattern, to be explained in §8.3), then the

distance d between the two features is equal to the probability that f comes from

a different population than the one described by the statistical sample of f .

Computing this probability is elementary statistics. Phaeaco uses the Student’s t

distribution (Equation 8.2).

1 2

2

1

2

1x 2x

()fmax

()f
xx

d
max

21 −
=

d =
∫

t

-t +

∫ π/2

0 sin

, where
Ns
xx 12 −

=t
dx

xN
N N 2

21
1

−
−

1−N dxxN

Equation 8.2: Distance d of a feature f2 of sample size N from a feature f1 of an exemplar

In Equation 8.2, 1x is the field “mean” of f1, and 2x is the “mean” of f2, which

is of sample size N and deviation s. The integral55 in the numerator returns the

area under the curve of Student’s t distribution, and the integral in the

denominator is a constant depending on N such that the total area under the curve

is 1.

Finally, suppose the fields “N” of both features f1 and f2 are greater than 1

(i.e., both f1 and f2 are parts of corresponding patterns — see §8.3). Then the

55 Gauss–Legendre numerical integration is used to evaluate integrals in constant time.

 Visual Patterns

216

distance d between f1 and f2 is equal to the probability that the populations

described by the statistical samples of f1 and f2 are different. To express this in

formulas, assume f1 has mean value 1x , standard deviation s1, and sample size N1;

and f2 has mean value 2x , standard deviation s2, and sample size N2. Then the

desired probability is found by substituting in Equation 8.2 the values of N and t

given in Equation 8.3.

() ()

−
+

−

+=

11 2

2
2

2
2

1

2
1

2
1

2

2
2

1

2
1

N
Ns

N
Ns

N
s

N
sN

2

2
2

1

2
1

21 N
s

N
sxxt +−=

Equation 8.3: Values to substitute for N and t in Equation 8.2 for the distance between two
features f1 and f2, with statistics 1x , s1, N1, and 2x , s2, N2, respectively

N in Equation 8.3 is the “degrees of freedom” of the Student’s t distribution,

and t is a “standardized t-statistic”.

8.2.2 Matching numerosity nodes
The equations given in §8.2.1 concern feature nodes that are not numerosity

nodes. If the nodes are of type “numerosity”, then the formulas are different, but

the general idea is the same as in §8.2.1. Specifically, a distance is computed

again by comparing samples from Gaussian-like populations. Recall that the

representation of a number in Phaeaco, according to the accumulator metaphor

(§7.3.2), is a Gaussian, given in Equation 7.3. The method of comparing two

numbers was given as an algorithm in §7.3.2, where it was noted that, if the two

numbers to be compared are L and S (for “Large” and “Small”), then their

standard deviations are σL = σ0 L and σS = σ0 S , respectively, where σ0 is some

constant. Then their distance d is the probability that the populations described by

the Gaussians N(L, σL), and N(S, σS) are indeed different. Suppose the two values

8.2 Pattern-matching 217

L and S have been observed only once (i.e., their field “N” in Table 7.1 is 1). Then

d is computed by the following formula.

π2
1

=d ∫
z

-z
, where:

SL
SL

z
+

−
=

0σ
dxe

x
2

2
−

Equation 8.4: Distance d given two numerosity values L and S that have been observed once

Equation 8.4 is analogous to Equation 8.1: it tells us how to compute the

distance between two numerosity values that have been observed once. Formulas

analogous to equations 8.2 and 8.3 for numerosity values with a statistical sample

of size greater than 1 are given below. To avoid any possible confusion, note that

the notion of numerosity is associated with the idea of a “statistic” in two different

ways: implicitly, through the accumulator metaphor and the resulting Gaussian

spread of the perceived numerosity value around the “correct” number; and

explicitly, because each numerosity node is also of type “feature” in Phaeaco’s

ontology, so that it includes the fields of Table 7.1. Examples of how the statistics

of numerosity can be collected explicitly would be to let the system perceive a

sequence of groups of dots (similar to those in Figure 8.1a), each group consisting

of a different number of dots; or to be exposed to a sequence of different polygons

— heptagons, octagons, nonagons, etc. — noticing the numerosity of their sides,

or vertices. In such cases the field “N” (“number of occurrences”) of the

numerosity value is greater than 1, and all other fields (“mean”, “var”, etc.) in

Table 7.1 are updated.

There is a formula analogous to Equation 8.2 for computing the distance

between two numerosity nodes, one of which has been observed only once (hence

its accumulator-generated Gaussian has mean M and standard deviation σ0 M),

and the other is a statistical sample of size N2 > 1. Recall that the sum of variables

 Visual Patterns

218

from a Gaussian distribution is again a Gaussian (§7.3.2), so denote the mean of

the second numerosity node by 2x and its standard deviation by s2. The formula is

similar to Equation 8.4, except that the standardized variable z is as follows:

2

2
22

0

2

N
s

M

xM
z

+

−
=

σ

Equation 8.5: Value of z to use in Equation 8.4 for numerosity values one of which is observed
once (an exemplar), and the other N2 > 1 times (a pattern)

Similarly, the formula for numerosity nodes both of which are samples of size

greater than 1 (i.e., two patterns, analogous to Equation 8.3) is similar to Equation

8.4, except that the standardized variable z is given by the following formula:

2

2
2

1

2
1

21

N
s

N
s

xx
z

+

−
=

Equation 8.6: Value of z to use in Equation 8.4 for numerosity values of two patterns

The parameters in Equation 8.6 (1x , 2x , etc.) are assumed to have their

obvious meanings.

8.2.3 Combining feature differences; contextual effects
The formulas in §8.2.1 and §8.2.2 indicate how to compute the difference

between two feature nodes in isolation (e.g., two slopes), but they do not explain

how to combine the features shared by an object. For example, suppose that two

straight line segments are compared, hence their representing λ-nodes must be

matched with each other. Each line segment has several features: slope, length,

etc. Given the difference d1 between the two slopes, and also the difference d2

8.2 Pattern-matching 219

between the two lengt s, and so on, how do we combine ese differences to

arrive at a single value d that will denote the overall differen e between the two

line segments? Figure 8 2 depicts such an example.56

Figure 8.2: Tw

In general, suppose

and let di, i = 1,…,n be

di is computed as expla

two objects is compute

Equation 8.7:

The wi’s are the w

real number, and equal

LTM. For example, su

56 The numerosity node is
values at a prior stage; for
an object is computed at th
matching the λ-nodes of the

h

.

λ

o line segments with their features considered f

Figure 8.2

 there are n features in each of the tw

 the differences of their corresponding

ined in §§8.2.1–8.2.2. Then the overal

d by Equation 8.7.

∑

∑

=

== n

i
i

n

i
ii

w

dw
d

1

1

Overall difference of two objects with a numbe

eights of the compared features. Each

s the current “significance” of the corr

ppose the di between two slopes is c

 not shown in because the algorit

example, the difference in numerosity of line s
e stage when the two object nodes are matche
 line segments.
th

c

λ

or matching

o compared objects,

features, where each

l difference d of the

r of features

wi is a non-negative

esponding feature in

omputed. The node

hm matches numerosity
egments that are part of
d, which occurs prior to

 Visual Patterns

220

“Platonic slope” in LTM has a significance value wi that, as will be explained in

chapter 9, consists of two parts: a relatively permanent long-term significance

(that represents how important the abstract notion “slope” is for the system), and a

relatively temporary activation value (that corresponds to how much the notion

“slope” has been primed at the current moment). Both the permanent significance

and the temporary activation are added and result in a value for wi. Given that

each di is a number in [0, 1], it follows easily from Equation 8.7 that d is also a

number in [0, 1].

If the i-th feature is missing from one of the two representations (e.g., because

the corresponding codelet was not given a chance to run and add the feature in the

representation), then the value of di is assumed to be 0 (i.e., the feature is

ignored).

The role of the wi’s is fundamental in how the context determines the notion

of psychological distance. Recall that each wi is not restricted to [0, 1], but can

take on any non-negative value. Thus, if one of the features is highly primed in

LTM, its high wi (relative to the rest) can cause the comparison to be made

essentially solely on the basis of this feature, all other features contributing a

negligible amount in the calculation of d. For example, consider the display in

Figure 8.3, in which there are several polygons with a variety of features: they can

be differentiated according to their number of sides, texture (outlined or filled),

size, line width, or any other of their features. Suppose that Phaeaco “wants” to

concentrate on the notion “texture”, and that, by doing so, the activation of its

Platonic idea “texture” in LTM is increased so much that its significance (wi)

dwarfs all other possible features. Then two objects with the same texture would

be judged as practically “the same” (d ≈ 0), whereas two objects with different

textures would appear as different as two objects can be (d ≈ 1). In this way the

8.2 Pattern-matching 221

stage is set for two groups to be formed, one with filled and another with outlined

objects. The mechanics of how to use d to form the groups is explained in §8.3.

Figure 8.3: Objects with a variety of features

Similarly, by shifting the focus of attention to different features and activating

their Platonic representations, other group formations are possible from the same

input. Note that the described contextual group-formation does not attempt to

model the human ability to see, e.g., the filled objects “popping out”, which is

probably related to lower-level, retinal processing properties (Treisman, 1980).

8.2.4 Matching entire structures
The formulas in §§8.2.1–8.2.3 correspond to the “base case” of a recursive

procedure. When the representations to be matched do not consist of a single node

of type “feature” but of an entire structure (such as those depicted in several of the

figures in chapter 7), then the recursive part of the algorithm is invoked.

Nonetheless, the word “recursive” at Phaeaco’s cognitive level is not identical in

meaning with the same word as used in mathematics and computer science. An

example of a high-level analogy will clarify the difference.

Suppose an analogy is being made between the governments of two nations,

the U.S.A. and Germany. The American president might be mapped onto the

German president, but given that the former is the chief executive of the

 Visual Patterns

222

government whereas the latter’s role is head of state rather than head of

government, a mapping between the American president and the German

chancellor might appear more appropriate. Next, one would have to select the best

matches for the American vice president and secretary of state, the German vice

chancellor, who also acts as the chief executive for Foreign Affairs, the American

House of Representatives and the Senate, the German Bundestag and Bundesrat,

the roles of various ministers, and so on. Generally, the analogy would be far

from perfect, and different mappings might be considered in an attempt to find the

best overall match. Though the final matching value would be subjective, most

people would feel comfortable with and agree on some mappings, while

disagreeing on others.

The analogy is usually constructed by proceeding in a top-down fashion: we

feel we have to start with the most “important” government members and

structures first (their importance being understood according to the impact their

decisions have on people’s lives), and then proceed to less important people or

committees, if at all. The last qualification is important: we do not proceed

blindly, mapping the two ministers of agriculture to each other if we have failed

to find a good match at the level of president and chancellor. Also, we proceed

with mappings at less important positions (“recursively”) only up to some point,

beyond which any further mappings apparently cannot have a significant effect on

our overall “feeling” of how good the match is. Finally, although each particular

person in a government possesses a substructure consisting of many levels (head,

body, arms, and legs, each being a structure in itself), we feel it is absurd to

match, for example, the American president’s nose with the German chancellor’s

nose; or to entertain for a moment a match between the nose of a person and the

left eye of another, and upon failing, to consider next the right eye, and so on.

8.2 Pattern-matching 223

Yet, in spite of the absurdity of this suggestion, there exist computer models of

analogy-making that employ precisely such mechanisms of blind mappings and

recursive searches to find the best possible match between two structures, such as

ACME (Holyoak and Thagard, 1995), and SME (Gentner, 1983). Some of these

models have even been designed with a neural network architecture, as if the

fundamental problem of answering how an analogy is identified has been solved,

and so all that remains is to show how neurons can come onto the stage and effect

an implementation of the theory, “proving” that analogy-making, after all, is

possible in agents that compute with neurons. (For a review of the pitfalls of such

approaches, see Hofstadter, 1995b.)

Phaeaco, in contrast, although engaging in the humbler pursuit of visual

pattern-matching, places some limits on the degree of recursion allowed by its

algorithm. For example, why does matching noses and ears of presidents seem so

utterly irrelevant for the purpose of deciding the structural goodness of a match

between two governments? The answer is that in Phaeaco’s approach bodily parts

belong to a different level of organization, and the mixing of levels is what

imparts absurdity to such matching attempts. The notion of “different level” in

this example arises from the observation that the idea “human being, person”

forms a well-understood category; therefore, when two people are given, we

already know they “match” with each other as members of the same category, so

we do not need to move “down” into the category level, and examine how well

two people match structurally. The move from the category “government” to the

category “person” implies a change of similarity criteria (from “importance and

role in government”, to “physical similarity of bodily parts”), and this is the main

reason why the mixing of levels appears incongruous.

 Visual Patterns

224

Another mechanism that prevents deep recursion in Phaeaco is, as was hinted

above, an application of the notion of “diminishing returns”. Representations, as

introduced in chapter 7, possess to a large extent a hierarchical structure. For

example, a visual box can contain some groups of objects, with each group made

of individual objects, each object made of lines, vertices, curves, etc. Although

the structure is not a tree but a graph, it closely approximates a tree. Thus, the

pattern-matching algorithm starts at what appears as the “root” of this tree-like

structure (for example, it could be the node of the visual box, if a match is

attempted between two boxes of a BP), and proceeds to the subparts of the

structure. Each “downward” step along nodes that are accessible from the top

node increases substantially a quantity that registers the depth the process has

reached, taking into account the relative importance of the visited nodes. Two or

three recursive steps “down” are usually enough to discourage the algorithm from

proceeding any further into the structure. Thus, “deep recursion” is ruled out in

Phaeaco more than on way.

λ

Figu

Knowing

explaine

of the pr
 in
Figure 8.4: Tw

re 8.4 shows t

 how to find th

d in §8.2.3), and

esent subsection
e

λ

o structures to b

wo sample s

e difference

 applying a “

 — Phaeaco
λ

e considered “r

tructures to

between two

recursive” d

finds an over
λ

ecursively” for mapping

 be matched with ea

 line segments, for exa

escent — with the qual

all difference for the tw
λ

ch other.

mple (as

ifications

o object

8.2 Pattern-matching 225

nodes shown in the figure. Observe that in finding the best match for a λ-node on

the left-hand structure, Phaeaco will compute its difference with each λ-node on

the right-hand structure before choosing the best match; then it will proceed to the

next λ-node on the left, and so on. Even this seemingly “computeristic” point of

the algorithm, however, is only of order O(n·m), where n and m are the numbers

of compared nodes of the left and right structures — which is not comparable to

an exponential explosion.

After discovering the best matches, the algorithm can also record which

elements of one structure correspond to which elements of another. This will be

useful later, when Phaeaco is building the average pattern of a category (§8.3.3).

8.2.5 Using difference to compute similarity
Once a value of difference d is computed as explained in the previous subsections,

a measure of similarity s can be obtained via the following transformation:

des −=
Equation 8.8: similarity as a function of difference

Since the value of d in Equation 8.8 is in the range [0, 1], it follows that the

value of s is in the range [1/e, 1], where 1 stands for “identity”, and 1/e ≈ 0.37 for

“minimum similarity”. Although a value such as 1/e appears to destroy the

elegance of the range for differences, [0, 1], note that any choice of range is, after

all, arbitrary. Future extensions of the architecture beyond the BP domain might

require extending these limits as well (e.g., to “even less similarity” than 1/e).

Equation 8.8 is employed merely for compliance with the Generalized Context

Model (§6.1.4).

 Visual Patterns

226

8.3 Group and pattern formation

Equipped with a similarity measure for representations, we can now proceed to

solve the fundamental problems of identifying groups of objects, and forming a

summary representation (a “visual pattern” in Phaeaco’s terminology, or “pattern”

for simplicity) for each group. It is best to do this by considering a concrete

example: the quintessential group-identification BP, already presented in §0

(Figure 2.9, BP #166), a single box of which is shown in Figure 8.5.

Figure 8.5: One of the boxes of BP #166, exemplifying group formation

It is desirable to have an algorithm that, given the input box shown in Figure

8.5, discovers two groups of objects (dots), and builds them incrementally, as the

dots are “seen” one by one (i.e., as their representations are built in Workspace

one by one). This is an absolute requirement: in Phaeaco’s fashion of processing

input, it is not possible to wait until all objects become available before

manipulating them, because it is not known when an “end of input” will be

detected. For this reason, all processing algorithms in Phaeaco start working as

soon as the first data on which they can work become available. Nonetheless, this

requirement — which is dictated to Phaeaco by its architectural constraints —

does not imply that human cognition, too, always groups entities sequentially and

incrementally. The dots in Figure 8.5, for example, are probably processed in

parallel by the hardware of our retinas and visual cortex, whereas the process of

8.3 Group and pattern formation

227

learning the stereotypical behavior of people belonging to a particular culture

might take a person years or even decades, so it can be reasonably assumed to be

achieved incrementally, without having immediate access to the entire set of data.

This observation, as we shall see in the subsections that follow, permits some

freedom concerning the kinds of algorithms that can be assumed “admissible” (in

a sense that will be explained shortly) for a cognitive agent.

8.3.1 Background from computer science
The requirement that the group-formation algorithm be incremental immediately

disqualifies a number of methods used in computer science in the field of data

mining, in which algorithms often build groups after all data have been collected,

and the number of desired groups is given as a parameter (for a review, see Jain,

Murty et al., 1999). The notion of unsupervised group-formation in data mining is

usually called “clustering”. Some non-incremental or supervised algorithms (e.g.,

“k-nearest neighbors”) can perform optimally because they benefit from the re-

examination of the input, but they are hard to reconcile with cognitive

mechanisms, which clearly do not store data in large arrays, scan them multiple

times, and store intermediate results in other data structures, nor do they receive

supervision from an “oracle” that knows the classification of a subset of the data.

An additional requirement that disqualifies a large class of algorithms is that

there can be no parameter such as “desired number of groups” that is known in

advance; clearly, in cognitive tasks the number of groups is one of the features

that must be identified. Thus, clustering algorithms such as “k-means” (McQueen,

1967) and its variants are cognitively implausible. Despite its implausibility,

however, the simplicity of k-means makes it useful as one of the standards against

which Phaeaco’s algorithm is compared in §8.3.4.

 Visual Patterns

228

Incremental algorithms usually perform in linear time with respect to the size

of the input (i.e., they are O(n) where n is the size of the input),57 but their

performance is sub-optimal. There are even some incremental, linear-time, and

optimal algorithms, but which are inappropriate in cognitive science because they

are based on ad hoc heuristics and the setting of a large number of parameters. An

extreme example of the use of heuristics is an algorithm known as “ISODATA”

(Ball and Hall, 1965), that manages to perform optimally and in linear time, but is

so complicated that it is safe to say that it exists only as a module in certain

FORTRAN libraries of clustering and data mining routines. An additional

problem for algorithms packed with heuristics is that often their advantages can

be exploited only when the size of the input is large (e.g., on the order of

thousands). The reason for this is that heuristics often require an initial

computational overhead that imposes a significant burden if the size of the input

is small. Cognitive systems, by contrast, often have to form categories on the

basis of a very small number of examples, as in Figure 8.5.

8.3.2 Phaeaco’s group-formation algorithm
Phaeaco’s algorithm accepts as input a set of “exemplars” (for example, they

could be the set of dots shown in Figure 8.5, or entire representational structures

such as those presented in chapter 7), declared as a parameter of type “queue” in

Figure 8.6, to emphasize the idea that a single scan of the exemplars is enforced.

The algorithm constructs and outputs a set of “patterns”, each of which is a

statistical summary of a group formed by the exemplars. The algorithm is also

called “Patterns”, for lack of a more suitable one-word mnemonic.

57 In contrast, non-incremental algorithms are usually O(p(n)), where p(n) is a polynomial of
degree n ≥ 2, because they scan the input repeatedly.

8.3 Group and pattern formation

229

Algorithm Patterns (queue exemplars)
set patterns ← empty
set known-exemplars ← empty
for each exi in exemplars do the following

if exi is not Similar to one of patterns then
real max-similarity = 0
pattern closest ← null
for each exj in known-exemplars do the following

real similarity = Match (exj, exi)
if similarity > max-similarity then

max-similarity ← similarity
closest ← exj

if max-similarity > clustering-threshold
pattern new-pattern ← Form Pattern out of closest and exj
if new-pattern Resembles one of patterns then

discard new-pattern
else

Add new-pattern to patterns
Remove closest from known-exemplars

Add exi to known-exemplars
output the Union of patterns and known-exemplars

Figure 8.6: Phaeaco’s basic group-formation algorithm

The notation used as pseudo-code in the algorithm of Figure 8.6 should be

self-explanatory: indentation signifies blocks of code in the usual programming

convention, keywords of the hypothetical language are shown in bold type,

identifiers (variables) in italics, types of identifiers in bold italics, and calls to sub-

algorithms (to be discussed below) in regular type, but capitalized.

The algorithm starts by first initializing its output set of patterns and a local

set of “known exemplars” to the empty set. Each input exemplar is compared

against each pattern in the current set of patterns. If it is not “similar enough” (this

will be explained next) to any of the current patterns, then the following happens:

before adding the input exemplar to the set of known exemplars, each of the

 Visual Patterns

230

known exemplars is considered as a candidate to form a new pattern with the

input exemplar. If this new pattern is really new, i.e., if it does not match well

with any of the current patterns, then it is added to the set of patterns; otherwise it

is simply discarded. Finally (when all input exemplars have been considered),

whatever known exemplars have been left out (i.e., those that did not form a

pattern with any of the input exemplars) are turned into “groups made of a single

element”, and are added to the set of patterns.

The meaning of the last step can be explained by the example in Figure 8.7:

when the algorithm ends, the two isolated dots are left in “known exemplars”, so

each can be termed trivially a “group” and added to the set of patterns.

Figure 8.7: Another box from BP #166, with one group (pattern) and two isolated exemplars

Features of the Patterns algorithm include the use of a “clustering threshold”

and the storing of input exemplars in the temporary list of “known exemplars”.

The clustering threshold is a parameter that can be considered as a near constant,

but can vary slightly depending on contextual pressures: increasing its value

decreases the “tolerance” of how different two exemplars can be before they are

put in different groups. Storing input exemplars in the set of known exemplars

makes this algorithm quadratic (O(n2)) — more in §8.3.4.

The algorithm of Figure 8.6 is only the “main” procedure of an entire set of

sub-algorithms that are explained in what follows, starting with one implied by

the line that reads: “if exi is not Similar to one of patterns…”.

8.3 Group and pattern formation

231

Algorithm ExemplarIsSimilarToAPattern (pattern exemplar, set patterns)
if patterns is not empty then

real max-similarity = 0
pattern closest-pattern ← null
for each pattern in patterns do the following

if pattern Resembles the exemplar then
real similarity = Match (pattern, exemplar)
if similarity > max-similarity then

max-similarity ← similarity
closest-pattern ← pattern

if closest-pattern is not null then
Update closest-pattern with exemplar
return true

return false

Figure 8.8: Algorithm testing for similarity of exemplar to patterns

The remaining sub-algorithms are straightforward:

• To “Match” two exemplars means to compute their similarity as specified

in §8.2, and to return the value as a real number.

• The decision “Resembles” (which appears in both listed algorithms) is

implemented by simply calling “Match” and testing whether the resulting

value of similarity is greater than the clustering threshold (the same

threshold that was used in the main procedure of Patterns).

• Finally, the lines “Form Pattern” (out of two exemplars) in Figure 8.6, and

“Update” (a pattern with an exemplar) in Figure 8.8, are essentially calls

to the same sub-algorithm, which causes the exemplar to update the

statistics of a pattern, and which merits an explanation in a subsection of

its own.

 Visual Patterns

232

8.3.3 Pattern updating
The preceding discussion has explained how to compare either two exemplars, or

a pattern (the statistical summary of exemplars) with an exemplar, or two patterns,

thereby obtaining a measure of their difference, and how to use that difference to

decide that exemplars belong to a group, represented by its corresponding pattern.

But it has not explained how a pattern is constructed in the first place.

The construction of a pattern out of two exemplars follows a “recursive”

procedure carried out on the representational structure, with all the same

disclaimers against deep and blind recursion as were expressed in §8.2.4. At the

base of this recursion stands the statistical updating of featural nodes.

Suppose two nodes that represent slopes of line segments that belong to

different exemplars are given. For example, the line segments might be the left

slanted sides of two “A” ’s, printed in two different fonts (Figure 8.9). The first

slope might be 65%, and the second slope 75%. If we try to generalize and think

of the two instances (exemplars) of the letter “A” as “one idea”, then we can say

that the average slope of the left side, given only these two exemplars, is (65 + 75)

/ 2 = 70%. A standard deviation can also be computed, and it is 652 + 752 – 2·702

= 50% (see Equation 8.10).

Figure 8.9: The letter “A” in two different fonts

In general, if we already have a statistical sample with mean value x and size

N, then the formula for computing the new mean x ′ after inserting an additional

datum x in the sample is:

8.3 Group and pattern formation

233

1+
+⋅

=′
N

xxNx

Equation 8.9: New mean given an additional datum, old mean, and sample size

If the old sample has standard deviation s, then the formula for computing the

new standard deviation after inserting x in the sample uses the new mean s ′ x ′

from Equation 8.9. It also uses the sum of squares of the sample data, which is

denoted by Σ2 in Equation 8.10:

()
N

xNxs
22

2 1 ′+−+Σ
=′

Equation 8.10: New standard deviation given an additional datum and new mean

The quantity Σ2 + x2 is the sum of squares of the new sample. This quantity

makes evident the reason for keeping the sum of squares explicitly as a field in

the statistical structure of a feature in Table 7.1: to avoid storing explicitly the

sample data xi. Thus, for the sake of completeness, four more formulas must be

added to show how the rest of the fields in Table 7.1 are updated after adding a

new datum, including the new minimum and maximum value of the sample:

1+=′ NN
2

22 x+Σ=Σ′

()xMinnMi ,min=′

()xMaxxMa ,max=′

Equation 8.11: New number of data, sum of squares, minimum, and maximum value

All the equations above are easily generalized for the case where the added

quantity is a statistical sample with N > 1, instead of a single datum.

Thus, suppose several exemplars have been encountered, as in Figure 8.10:

 Visual Patterns

234

Figure 8.10: A larger sample of input exemplars of “A” ’s in various fonts (Figure 2.2, repeated)

Then, assuming Phaeaco has succeeded in placing them all in one group, the

formed pattern that represents the statistical summary of the exemplars in the

group will contain nodes for features that will correspond to the average value,

standard deviation, etc., of the left slanting line, its average length, and so on for

each feature of the pattern. To depict concretely something that could be the result

of this pattern, consider the drawing in Figure 8.11.

Figure 8.11: Concrete (and oversimplified) depiction of what a pattern can generate

Observe, however, that Figure 8.11 is only a rough approximation of what

could be generated from the true structure of the pattern stored in Phaeaco’s

memory. The pattern itself is nothing like a “template bitmap” (as might be

erroneously inferred from Figure 8.11), but has the structure of a representation,

similar to the structures of chapter 7, except that its featural nodes are full

statistical samples with the structure of Table 7.1. (A pattern for something like

the letter “A” is too complicated a structure to be depicted in a single page of this

thesis.)

If the statistics of the pattern are updated by the equations given earlier, then

how is the representational structure of the pattern constructed? Even in a case as

seemingly simple as two exemplars of the letter “A”, a question arises about how

8.3 Group and pattern formation

235

small structural discrepancies are to be summarized in the pattern. For example,

serifs might be present in some of the “A” ’s but absent in others, as in Figure

8.10. Should the pattern include serifs in its structure, or not?58

The answer in Phaeaco’s architecture is literally “yes and no”. This equivocal

result is achieved by modifying an element of representational structures that has

not been mentioned yet: the strength of links between nodes. Links in patterns

have strengths that exactly follow the rules for how activations increase and

decrease their values, as described in §7.2.

The idea is simple: when a new structural element (such as a serif) is

encountered, the element is linked into the structure of the pattern, but the

strength of its link is weak. Each new exemplar that contains this element

increases the strength of the corresponding link. As long as patterns are formed in

the Workspace, links between nodes do not decrease; but when a pattern is copied

to the LTM, as will be explained in the next chapter, all links can weaken (or be

enhanced) over time, by mechanisms that are specific to the LTM.

This observation also answers the question of what the pattern built from

seemingly incongruous exemplars, such as a triangle and a square, would be. If

contextual pressures dictate lumping together triangles and squares (e.g., with the

concept “polygon” highly primed in LTM), then the structure of the pattern will

include four λ-nodes, but these nodes will be linked in peculiar ways, representing

the ways line segments are connected in both a triangle and a square; additionally,

some link strengths will be weaker than others.

58 No attempt is made here to propose a pattern structure that would represent artistic designs of
the letter “A” that do not consist of three lines, possibly with some serifs (i.e., typically in Times
Roman font). For a treatment of this topic see the Letter Spirit project (Rehling, 2001).

 Visual Patterns

236

8.3.4 Comparison of algorithms
To ascertain that the Patterns algorithm is not deficient in comparison with other

known clustering algorithms, its performance was measured against three

algorithms that are at least as easy to implement:

• The “k-means” algorithm (McQueen, 1967):

1. Initialize the first k clusters with random exemplars from the input.

2. Distribute the exemplars among the present clusters; in the process,

update the cluster centers.

• The “leader” algorithm (Hartigan, 1975):

1. Assign the first exemplar to the first cluster.

2. Assign the next exemplar to the most similar cluster, or create a

new cluster if the similarity exceeds a given threshold.

3. Repeat step 2 until all exemplars have been assigned to a cluster.

• The “Lu and Fu” algorithm (Lu and Fu, 1978):

1. Given the current exemplar, assign it to the cluster that includes the

exemplar that is closest to the given one.

2. If the similarity of the closest exemplar exceeds a given threshold,

then create a new category for the current exemplar.

3. Repeat step 1 until all exemplars have been assigned to a cluster.

The first two algorithms do not store the input exemplars for re-examination,

whereas the third one, like Patterns, stores exemplars and re-examines them. The

algorithms were tested on a variety of clustering cases, varying the number of

clusters, the number and density of exemplars in each cluster, and the distance

among clusters (how well separated they were). Exemplars were real numbers in

[0, 1]. A “performance index” was established to automatically assign a grade of

8.3 Group and pattern formation

237

success to each run of each algorithm, with values in the range [0, 100], with 100

meaning “perfect success”. It was possible to compute this index automatically

because the tested exemplars were always forming groups unambiguously. For

those algorithms requiring a clustering threshold (i.e., all except k-means), the

value of the threshold at which the algorithm performs best was selected. The

results are shown in Table 8.1.

Algorithm

Performance

index (0–100)

Standard

deviation

Clustering

threshold

Threshold

tolerance

Patterns 98.5 7 0.83 0.78–0.88

leader 92.9 16 0.82 0.78–0.85

Lu & Fu 78.8 28 0.85 0.81–0.88

k-means 54.7 36 — —

Table 8.1: Comparison of algorithmic performance

The performance index was averaged over a large number of runs, so the third

column gives the standard deviation of the sample of measured indices. All three

algorithms that include a clustering threshold showed some tolerance to the value

of their threshold, which means that the specific (best) value listed in column

“Clustering threshold” is not crucial for the algorithm to perform well.

Further tests in speed and memory usage showed empirically what was

expected theoretically: the leader and k-means algorithms are the fastest and use

the least memory among the four, since they perform a single pass over the input

exemplars. Apparently, they achieve this at the expense of performance.

(Nonetheless, the performance of leader is only very slightly inferior to that of

Patterns.) The speed and memory results are summarized in Table 8.2.

 Visual Patterns

238

Algorithm Speed Memory

k-means 0.38 O(n)

leader 0.49 O(n)

Patterns 0.92 O(n2)

Lu & Fu 1.38 O(n2)

Table 8.2: Comparison of algorithmic speed and memory requirements

The values shown in the “Speed” column of Table 8.2 are in milliseconds

averaged over 6000 repetitions, but these numbers have only relative, rather than

absolute, significance.

Overall, the Patterns algorithm compares favorably in performance with the

other three algorithms, although it achieves this at a sacrifice of speed and

memory in comparison to the leader algorithm. However, the observed sacrifice

occurs only when a large number of exemplars must be clustered quickly, which

usually is a requirement in computer science applications. Cognitive

categorization tasks are usually slow when they are sequential (nobody asks

people to cluster thousands of items in seconds), or fast when parallel, as in the

example of dot-grouping in Figure 8.5. In the latter case, Phaeaco, with its low-

order polynomial-time algorithm (O(n2)), implemented on a sequential processor,

is “competing” against our human neurally-implemented parallel mechanism.

This is not a handicap from the point of view of the theory of computational

complexity, according to which a parallel algorithm of constant time can at best

be of polynomial (linear) time if implemented sequentially (e.g., Papadimitriou,

1994, p. 139).

8.4 Pattern matching as the core of analogy making

239

8.4 Pattern matching as the core of analogy making

Every scientific discipline has its “core” or “founding principles”, and until such

principles are spelled out explicitly and become widely accepted by the

practitioners in the field, the field is considered insufficiently scientific, a mixture

of art and science. For example, among the founding principles of physics are

Galileo’s and Newton’s laws of motion; in chemistry, Dalton’s atomic theory and

Mendeleev’s construction of the periodic table of elements; in biology, Hooke’s

discovery of cells (and coinage of the word), Darwin’s theory of evolution by

natural selection, and Watson and Crick’s discovery of the structure of the DNA

molecule; in cosmology, Hubble’s discovery of the expansion of the universe and

the subsequent Big Bang theory; in mathematics — if we interpret the notion

“science” in a broader sense — the axiomatic method, systematized by Euclid;

and so on. But what are the founding principles of cognitive science?

Many cognitive scientists have attempted to discover the “core” of their field,

but not all such attempts can be regarded as successful. In the 1970’s and early

1980’s, when the term “cognitive science” was not yet in common use (and when

most of the related work was done under either cognitive psychology or artificial

intelligence — two mutually non-communicating fields), some researchers

proposed that “problem solving”, and searches through exponentially large spaces

with the use of heuristics, are fundamental. It soon became evident, though, that

these are principles for building computer systems that can solve only in an

alternative, computeristic way problems traditionally tackled by human minds.

This idea may be said to have culminated with the construction of the chess-

playing program Deep Blue and its win over the human world chess champion

(see more in §4.4.2). Such methods, however, have little or no relation to

cognitive principles. At the same time there was strong support for the idea that

 Visual Patterns

240

mathematical logic is at the core of the cognitive engine of every intelligent agent,

and the repercussions of this view can still be felt in various publications and

research programs. Nonetheless, the view that this assumption is erroneous, and

that the predicate calculus is an epiphenomenon of human cognition rather than a

foundational “pillar” has already been expressed in this text (§7.4.10).

The 1990’s saw a resurgence of research in artificial neural networks, and —

helped by discoveries of techniques in exploring the blood flow in the human

brain — a wealth of observations of areas of the brain while it engages in various

cognitive tasks. Although no one can deny that human cognition is ultimately

based on neural mechanisms, it is questionable whether neurons constitute the

sole and ultimate “currency unit” of cognition. The primary subject of cognition is

not the brain, but the mind. (Not even specifically the human mind, but the Mind,

abstractly.) Brains are the biological organs that evolution selected in animals to

cope with properties of their environment. But brains (and neurons) do not

necessarily imply minds. For example, chickens have brains, too, but their

cognitive abilities are not exactly at the cutting edge of research in cognitive

science. Not even the quantity of neurons qualifies as what makes the difference

between full human intelligence and its approximations: whales, most dolphins,

and elephants, all have more neurons in their brains than do humans, but their

cognitive abilities are at the level described in psychology as “animal cognition”.

Also, mentally retarded humans, though significantly more intelligent than any

animal species, are incapable of serving as examples of an average human mind.

8.4 Pattern matching as the core of analogy making

241

No neurobiologist is yet in a position to tell which brain belonged to a mentally

retarded person and which to a genius after a postmortem examination.59

One of the fundamental tacit assumptions in cognitive science has been that

cognition can be described abstractly as a set of principles, and is implementable

in ways other than the only example of which we are aware, i.e., in biological,

neural hardware. Thus, even though neurons are sufficient for minds, they are not

necessarily necessary. If cognitive scientists did not hold this belief, much of the

motivation for building intelligent machines would not be justified.

Thus, neurons are the building blocks of a complex system (brain) that gives

rise to the subject of cognitive science but is not the subject of it; it is the subject

of a related discipline (neurobiology). Research on the computeristic counterparts

of neurons (artificial neural networks, or ANN’s) represents efforts to show that

some specific cognitive problems are solvable within the particular framework of

ANN’s, implying that they are also solvable in the framework of real neurons

(which we already know), and that possibly they are also solved in the same way

by neurons (which is at best a conjecture). But research in ANN’s does not

necessarily address the core principles of cognition. ANN’s might, for all we

know, be an attempt to work in cognition at the wrong level, akin to trying to

understand biological principles in terms of simulated chemical reactions.60

There has been a different idea for what stands at the foundation of cognition.

According to this idea, championed most notably by Hofstadter since the early

1980’s, the core of cognition is “analogy-making”. Most people — cognitive

scientists and laypeople alike — upon hearing this term, recall salient examples of

59 Certain conditions, such as Down’s Syndrome, can be identified by examining characteristics
of the DNA structure (the number of chromosomes), but this apparently is unrelated to the
structure of the brain itself — any cell with a nucleus from the tested individual would suffice.
60 Every good biologist needs to have a good knowledge of chemistry, but knowing chemistry
alone does not make a good biologist.

 Visual Patterns

242

analogies. For instance, scientists (but not physicists or chemists) might think “an

atom is like a planetary system”61 is an example of an analogy. Laypeople might

choose examples such as: “Afghanistan was the Vietnam of the Soviet Union”, or

ones with predictive power, such as: “Iraq will turn out to be the new Vietnam for

the U.S.” Hofstadter himself has enriched the repository of creative analogies by

bringing up amusing examples, such as: “Cambodia is the Vietnam of Vietnam”,

or “Dennis Thatcher is the First Lady of Britain”.62 Right… but what does all this

have to do with the foundations of cognition?

It turns out that when Hofstadter uses the term “analogy-making” he means it

in a much more general and fundamental sense than the one suggested by such

humorous examples. In particular, he would say that analogy-making is to see two

tables (e.g., a formal, stylish, dining-room table, and a casual, kitchen-room

table), and perceive their abstract common structure; or, to see two apples and

perceive them as instances of the same kind of fruit; or, to see a pen and perceive

it as “a pen”, i.e., categorize it under the already known concept of “pen”. The last

example implies that any instance of perception and subconscious categorization

is an instance of analogy-making, in Hofstadter’s use of the term. Indeed, in

“Analogy as the Core of Cognition” (Hofstadter, 2001), we read:

The process of inexact matching between prior categories and new

things being perceived (whether those “things” are physical objects

or bite-size events or grand sagas) is analogy-making par excellence.

61 A wrong analogy, but naturally it persists in the minds of scientifically educated people, given
the number of old physics textbooks depicting an atom as a planetary system. But given the wrong
model, it is a great analogy.
62 This was said at a time when the prime minister of Britain was Margaret Thatcher.

8.4 Pattern matching as the core of analogy making

243

In Phaeaco’s terminology, this sort of analogy-making is called pattern-

matching and categorization. There is no need to define an artificial border

between pattern-matching and analogy-making (as the latter is understood by

most people), because there is no use that such a border can have: it is the same

mechanism, all the way from “grand sagas” to physical objects. But in spite of its

being the same mechanism, the use of different terms for its two “extremes” is

justified, because it facilitates communication. An analogy will help explain the

justification for using both terms, “pattern-matching” and “analogy-making”.

When an atom of carbon (C) joins with four atoms of hydrogen (H) to make a

stable molecule of methane (CH4), we say that the carbon “combined” with

hydrogen. But when people consume a sandwich, we say they are “eating” it.

People are not said to “combine” with their sandwich, nor is carbon said to “eat

up” hydrogen. Yet, deep down it is the same mechanism: the process by which we

evolved from organic molecules to complex mammals involves an astronomically

large number of chemical exchanges.63 But even though the mechanism remained

the same in principle, it became so complex that we feel we must reserve the verb

“to eat” for when we consume our food, rather than use it to describe even simple

combinations of atoms and molecules.

The previous analogy is deeper than might be perceived at first thought. Just

as food consumption in the world of biology has its chemical analogue in

molecule combination, so the cognitive mechanism of analogy-making has its

biological analogue in pattern-matching. Animal cognition varies greatly in

63 Somewhere along this process (early on, presumably in the first half billion years of Earth’s
history) organic molecules “learned” to do something that approximated replication, and then
gradually perfected this achievement, entering the biological stage in our planet’s history. But no
matter which stage we look at, chemical or biological, the mechanism of chemical combination or
food acquisition — which description sounds more suitable depends on the stage — has remained
identical throughout our evolutionary past.

 Visual Patterns

244

degree, from the absolute zero of sponges, to the highest degree of which we are

aware: the cognition of our own species. Although it is still largely a mystery

whether animals other than humans maintain rudimentary mental representations,

it is plausible that pattern-matching was not discovered suddenly by human

beings, but existed at least among our lineage of ape ancestors, and probably

among other cognitively complex animals as well. Are we to believe that when

we see a pen we perceive it as “a pen”, or “a writing instrument”, but when lions

see (or smell) a zebra they are unable to perceive it as “a zebra”, or “food”? It all

depends on how complex animal representations can be. Conceivably, Skinnerian

stimulus-and-response behaviorism has its place among creatures that appeared

early on in evolutionary history and changed little (if at all) since, but is

insufficient to describe the cognition of animals that developed complex cognitive

abilities and behaviors. It is an example of anthropocentric chauvinism to suppose

otherwise.

In summary, our ability for analogy-making (at its best), or pattern-matching

(at its humblest) — whatever name we give to it — is the fundamental ability of

cognitive creatures to perceive the world and make sense out of it, by assigning

each object to a known category; to form categories by being exposed to

sufficiently similar objects; and even to perceive the objects themselves, which is

a prerequisite for categorization. How do we manage to see “objects” in the

world, rather than random collections of “pixels” sent to our visual cortex through

the rods and cones of our retinas? We do it because some collections of “pixels”,

due to spatial proximity (such as the dots in Figure 8.5), or proximity due to other

features (color, texture, etc.) seem to “belong together”. By making groups out of

what seems to belong together, we perceive “objects”.

8.4 Pattern matching as the core of analogy making

245

Note that the use of “we” in the previous paragraph does not imply that

objects are only an artifact of cognition. Objects must exist objectively in the

world; animals simply evolved to perceive them, as the previous paragraphs on

the evolution of pattern-matching and analogy-making suggest. The present work

can be regarded as an existence proof of the proposition that minds are not

necessary to perceive and thus verify the existence of objects. After all, Phaeaco

can perceive them, too.

 Visual Patterns

246

CHAPTER NINE

Long-Term Memory and Learning
9 Long-Term Memory and Learning

9.1 Motivation: is LTM really necessary?

Previous FARG systems (§6.2) lack a true LTM (of the kind that is saved on a

permanent medium, such as a computer disk, and becomes available again at the

next instantiation of a program). Systems such as Copycat, Tabletop, and Letter

Spirit include in their architecture the Slipnet, whose nodes become activated

whenever information is processed and whose links shrink or expand according to

their “elastic” nature. But when the system stops running, all activity and

whatever modifications occurred in the Slipnet are swept from the computer’s

memory: the next time the system is invoked, it behaves as if the previous session

had never occurred, since the Slipnet nodes start anew with their “factory

defaults”, to use the terminology of the software industry. Metacat includes a

memory which is “longer term” compared to other FARG systems (though still

not saved permanently), but its memory is organized as a database of files with

facts regarding previous sessions, rather than as a true cognitive memory in

Phaeaco’s sense (to be explained in this chapter).

At least theoretically, a memory-resident Slipnet is all that is required by a

cognitive system: every modification effected permanently on a system that

periodically saves its Slipnet (or whatever its LTM is called) on disk can also be

effected in an identical way if the same system undergoes the same learning

 247

 Long-Term Memory and Learning

248

experiences in a single session. There is no theoretical advantage to be gained by

temporarily suspending the operation of the system, “waking it up” some time

later, and restoring it more-or-less to its previous state, the one that existed before

“going to sleep”. The periodic “sleep and wake up” stages that a true LTM allows

simply prolong the training period of the system, according to this view.

Although there can be no valid theoretical argument against this idea, some

practical considerations are worthy of attention. The expectation that a system

would undergo its entire training period in a single session, and thus learn a

significant amount of knowledge in a highly concentrated timeframe, is

tantamount to the idea that a person could go through their childhood and years of

formal education in a “fast forward” manner, compressing into a matter of

minutes (the usual duration of a computer session) a significant part of many

years of experience. It is common knowledge that the time it takes people to learn

various subjects generally cannot be compressed significantly, but instead time

must “take its course” until knowledge “settles”. This can be attributed to the

slowness of the underlying hardware medium (neurons). It is conceivable that the

advent of faster computer hardware will trivialize this practical problem,

compressing years of experience into minutes. But some simple calculations

suggest that this will not happen any time soon. To compress only 15 years of

experience into 15 minutes (which is at the limits of what can be considered a

reasonable time to wait before a program trains itself and becomes available) one

needs a computer that runs approximately ½ million times faster than present

ones.64 Assuming an improvement in computer speed on the order of 1.5 times

64 There are 525,600 15-minute intervals in 15 years. The implicit assumption is that a computer
would be required to undergo experiences similar to those of a person in the first 15 years of life,
which is a moot subject.

9.1 Motivation: is LTM really necessary?

249

per year,65 we conclude that we must wait for more than 32 years66 before

technology grants us this wish. There must be a more practical way to train a

computer.

There is an additional problem. Phaeaco’s LTM has a feature lacking from all

Slipnet-like memories of FARG projects. In addition to the “elasticity” of links

that causes them to act like rubbery bands changing the distance between nodes,

Phaeaco’s links can have their elasticity permanently modified, all the more so if

they shrink and extend repeatedly. As will be explained in §9.3, it is as if the

frequent use of memory gradually causes links not only to shrink more than

before, but also to “harden”, making it easier for activation to spread through the

linked nodes, and harder for the links to go back to their “factory default” length.

These are all features of Phaeaco’s “learning” abilities (§9.5), and for them to

have any perceivable effect on the behavior of the system, a significantly long

time must pass, during which the system gains experience. This property of

Phaeaco’s LTM makes it more difficult to insist that memory be updated with “a

life’s worth of experiences” in a single training session.

Finally, as will be explained in §9.4, the periodic sleep-and-wake-up stages

facilitate the implementation of a form of forgetting. Forgetting can be seen as

“culling” — allowing only the salient memories to remain accessible — which is,

after all, another way of learning.

65 This rate of improvement in hardware speed, known in the computer industry as “Moore’s law”
(in reality a self-imposed industry marketing strategy, rather than a true law of nature), was
already diminishing by the time the present text was written (2006).
66 This is the number of times that 1.5 must be multiplied by itself to yield approximately ½
million.

250 Long-Term Memory and Learning

9.2 From visual patterns to concepts

Phaeaco’s memory is populated with visual patterns (chapter 8), which are called

“core structures of concepts” in the context of the LTM. The reason for this

choice of terms will become evident in §9.2.1. The change in terminology (from

“patterns” to “concepts”) is necessary because, as will be further discussed in

§12.1, visual memory forms the basis for the more abstract conceptual memory

that seems to be the hallmark of human cognition. Thus, “galaxy” and “running”

can be thought to invoke visual patterns, but “democracy” and “theory” hardly do

so, and are better described as “concepts”. Although Phaeaco’s present

implementation supports no more abstract concepts than visual patterns (that were

once formed in the Workspace), the hope is that future work will use the present

framework to move naturally into the domain of abstract concepts. Accordingly,

the network of entities that forms the LTM in Phaeaco is not called a “Slipnet”,

but a “conceptual network”.

If the LTM consists of concepts, when do patterns migrate from the

Workspace to become LTM residents and be christened “concepts” (or, more

precisely, “core structures of concepts”)? The answer is: as soon as the visual

input that was responsible for their creation ceases to exist. In the case of solving

a BP, this happens as soon as the BP is solved, whereas in the case of receiving

input from a Mentor session (§5.2), it happens as soon as the input in the

Mentor’s box has been “seen” and a representation of it has been created.

Patterns created in the Workspace from visual input are not simply stored in

the LTM, adding one more resident each time, but matched against existing

concepts, using the same mechanisms that were described in §§8.2–8.3. If the new

pattern is found to match some LTM concept sufficiently closely, the concept is

9.2 From visual patterns to concepts

251

simply updated with the pattern (according to the equations of §8.3.3). But if the

pattern is different from all known LTM concepts, it will form the foundation of a

new concept. This idea is essentially the same as the idea that groups of

exemplars form visual patterns in the Workspace (§8.3).

If the LTM consists of an “ocean” of concepts, there must be some practical

way to navigate this ocean to find which concepts fairly closely match a given

pattern (which is about to migrate to the LTM) without testing each concept in

turn. Indeed, an indexing scheme that facilitates access to concepts in LTM will

be outlined in §9.4.1.

9.2.1 A slight departure from the Slipnet concept of concept
Figure 6.3, taken from GEB, is a depiction of a portion of a Slipnet. Each node, as

explained in §6.2.1, serves as the core of a concept, and nodes that are in close

proximity are said to belong to the halo of that concept.

Phaeaco’s conceptual network is slightly more complex than a Slipnet. A

concept in Phaeaco usually has a structure, unless it is a primitive. For example,

“triangle” is a non-primitive concept, and chapters 7 and 8 explained how the

pattern of a triangle can be formed, and hence can migrate into LTM, either

forming the basis for a new concept if nothing similar exists, or updating a similar

concept. But a triangle has a structure: it is made of three line segments, among

other parts. In Phaeaco’s LTM, each of the line segments has a node that

corresponds to it (which is not any specific line segment drawn in a box, but “a

line segment”, one of three that constitute a triangle). Each of these three line

segments is a node separate from the node that represents the Platonic concept

“line segment”, which is a more abstract idea than the notion “line segment (or

side) of a triangle”. In Figure 6.3 there is a node for “line segment”, and a link

that connects “triangle” and “line segment” with a relation labeled “composed

 Long-Term Memory and Learning

252

of ”. But how is the individuality of each of the three sides represented in a

Slipnet? How can a single “line segment” node represent the particular way in

which the sides of a triangle meet at three vertices, which is different from the

way the three line segments of the letter “A” meet and touch each other?

As the foregoing shows, the concept “triangle” in Phaeaco is not just a node

labeled “triangle” (the core) surrounded by a loose association of proximal nodes

(e.g., “rectangle”) that are part of its halo, but is also a structured collection of

nodes. The notion “halo” is still valid in Phaeaco and has the same meaning as in

a Slipnet, but the notion of “core” is modified to include not just a single node,

but the entire collection of nodes that make up the structure of the concept. To

avoid any possible conflict with the term “core” as used in earlier FARG systems,

the term “core structure” will be used to refer to the structure of a concept in

Phaeaco.

Figure 9.1: Core structures of concepts “triangle” and “quadrilateral” in LTM

Figure 9.1 shows two concepts, “triangle” and “rectangle”. The cloudy

regions that surround the core structures represent the halos of these two concepts

λ

λ

λ

λ λ

λλ

“triangle” “rectangle”

V V

V

V

V

V

V

9.2 From visual patterns to concepts

253

(note that they overlap). The core structures are by necessity shown with a bare

minimum of nodes among those that would be included in reality.

A question immediately arises: is the Platonic node “line segment” (which

stands outside of the “triangle” core structure) not in the halo of “triangle”? Recall

that in the Slipnet of Figure 6.3 there is a direct connection between the nodes

“triangle” and “line segment” (the Platonic notion), which is missing from Figure

9.1. The answer is that now “triangle” is linked indirectly to the Platonic “line

segment” node, because each of the λ-nodes of the core structure of a triangle is

of type “line segment”. Figure 9.2 adds the Platonic “line segment” into the

picture, somewhere in the common halo of “triangle” and “rectangle”.

Figure 9.2: Platonic “line segment” added in Figure 9.1

A link from each λ-node of the two core structures to the Platonic “line

segment” is shown in Figure 9.2. These links represent the relation “is of type”.

Similar links connect not only λ-nodes but every node of a core structure with its

corresponding Platonic primitive concept.

λ

λ

λ

λ λ

λλ

“triangle” “rectangle”

λ

V

V V

V

V V

V

“line segment”

Long-Term Memory and Learning 254

9.3 Properties of LTM nodes and connections

9.3.1 Long-term learning of associations
How do we learn to associate notions or procedures with each other, initially with

difficult conscious efforts, but later with the feeling that the task is becoming

easier, until eventually it is automatic and vanishes from consciousness? For

instance, anyone who has tried to learn to speak a foreign language has had the

experience of words “coming to the tongue” progressively more easily. A non-

native speaker who learns to self-correct a linguistic error, after being corrected

by a native speaker, might experience the same feeling of gradual automation.

Mechanical tasks, such as learning to drive and tying shoelaces or a tie, also pass

through similar stages. In the visual domain we often need to acquire a mental

map before we can navigate confidently in a previously unfamiliar neighborhood

or town. We acquire the map progressively, after repeatedly traveling through the

region. In BP’s, a solver might learn to imagine the convex hull of irregularly

shaped objects, after being repeatedly exposed to BP’s that employ this notion in

th lution. In this case, the l association is: ular shape → of

co hull”.

relation tioela-

eir so

nvex

irreg.
shape

Before activating relation

Figure 9.3: Easing the spreading of activati

“irreg

irreg.
shape

r

earned

convex
hull
After activating re

on in Slipnet
 think

convex
hull

n
lation

9.3 Properties of LTM nodes and connections

255

How is this observation modeled in a “traditional” Slipnet? When the relation

between two Slipnet nodes is activated, their link can be thought of as shrinking.

This has been illustrated in Figure 6.7, which is repeated in Figure 9.3, but

adapted to the example: “irregular shape → convex hull”. The smaller conceptual

distance allows more activation to spread from “irregular shape” to “convex hull”,

making it easier for the latter idea to follow from the former one.

But this cannot be an accurate model of long-term learning, because the

increased activation of the node labeled “relation” in Figure 9.3 is understood to

be a relatively temporary event. The elastic nature of the Slipnet links implies that

activations not only increase but also decrease; otherwise, concepts would be

permanently activated in memory — a rather un-cognitive-like situation. Indeed,

in FCCA we read (Hofstadter, 1995a, p. 212, emphasis in the original):

“The Slipnet is not static; it dynamically responds to the situation

at hand as follows: Nodes acquire varying levels of activation

(which can be thought of as a measure of relevance to the situation

at hand), spread varying amounts of activation to neighbors, and

over time lose activation by decay.”

Thus, the conceptual distances between related nodes not only shrink, but also

relax while activation decays. But if they do relax, do they return to their original

“factory default” lengths? In previous FARG projects, the answer has been “Yes”,

implying that Slipnet activations do not model truly long-term knowledge, but

rather what the word “activation” implies, i.e., “respond to the situation at hand”,

as mentioned in FCCA. The architecture of Phaeaco’s LTM modifies the original

Slipnet model to accommodate long-term learning, as described below.

 Long-Term Memory and Learning

256

The basic idea is that when activation decays, links should not return to their

original lengths; some residue of the earlier shrinking should remain on the

previously activated node (i.e., the node labeled “relation” in Figure 9.3), acting

as a reminder that the links with lengths that depend on this node were shrunk a

short while ago. Residues should have a cumulative effect, so that if, for example,

the activation of a node repeatedly reaches its highest value, the overall residue

should “remember” this fact. Nonetheless, the accumulated residue cannot be a

static quantity that remains fixed once formed; after all, minds hardly retain

memories forever (more on this issue later). Thus, the residue must also decay,

but at a much slower rate than the activation itself, reflecting the slowness in the

loss of long-term memory.

The idea of an activation residue is implemented in Phaeaco by a quantity

called “significance”, which is added to the current activation, resulting in an

overall “weight” of the node. Thus,

weight = significance + activation

The significance of a node is the long-term component of its weight, and

possesses the same architectural properties as an activation, introduced in §7.2.

The activation is the short-term component of the weight, functionally identical to

activations in a Slipnet (e.g., it spreads to neighboring nodes), and structurally

described also in §7.2. The only difference between significance and activation is

in their rates of increase and decay. Specifically, the increase and decay rates of

significance are several orders of magnitude slower than the corresponding rates

of activation. Their sum, i.e., the weight, is what in a Slipnet “can be thought of as

a measure of relevance to the situation at hand” (see the passage quoted earlier).

The weight is also the quantity wi in Equation 8.7 that determines the computation

9.3 Properties of LTM s and connections

257

of the psychological dis between two representations (§8.2.3). The way in

which the increase in act n affects the significance is explained next.

Recall that activation rease and decrease according to a sigmoid function

f, discussed in §7.2, and d ted aga 9.4.

0

1

1

ac
tiv

at
io

n

Figure 9.4: The sigmoid functio

Recall also that the number of di

domain of f is a parameter of the act

the activation. The justification for c

it takes a fixed interval of time for

immediately previous step x1 —

from to — if the param

axis” is large, then the activation va

parameter is small; hence the notio

implied by the discussion in the

significance of a node or link is se

stability of the activation of the same

)(2xf)(1xf
in in Figure

discrete steps
x

node

tance

ivatio

s inc

epic

f (x)

n f of an activation (Figure 7.17, repeated)

screte steps on the x-axis that determine the

ivation. Call this parameter the “stability” of

hoosing this term is the following: assuming

 the activation to decay from step x2 to its

hence, for the activation value to drop

eter “number of discrete steps along the x-

lue takes longer to decay than if the same

n of “stability” of an activation. As was

previous paragraphs, the stability of the

veral orders of magnitude greater than the

 node, or link.

 Long-Term Memory and Learning

258

An additional parameter is the “limiting activation”. This is a number l > 0,

very close to zero, the meaning of which is that the activation must remain

between l and 1 – l. Thus, l defines simultaneously a lower and an upper bound

for the activation value. Like stability, the limiting activation is not a system-wide

but a per-activation parameter, i.e., each activation has its local value of limiting

activation.

What connects these parameters with the notions of activation and

significance is that each time the activation value of a node or link reaches its

maximum (1 – l), the significance of that node or link receives a boost, increasing

to the next discrete point along the x-axis. But also, when the significance itself

reaches its maximum, its stability is increased by a small amount. Thus, repeated

maximizations of the short-term component (activation) not only increase the

long-term component (significance), but also cause it to become more stable. The

purpose of this architectural principle is that if a concept, or a relation between

concepts, is encountered multiple times, it should become both more important as

an idea in memory, and also harder to forget.

A consequence of the above is that when a link between two related nodes

“relaxes”, it does not return exactly to its original length, but to one that is slightly

shorter. This visualization makes sense if the length of a link corresponds not to

the activation or the significance of the relational node but to its weight.

A second consequence is that memories can be built that are literally

unforgettable. If the stability of the significance increases beyond some value, the

time it takes for the significance to drop back to “zero” can become longer than

the lifetime of a system employing Phaeaco’s architecture.

9.3 Properties of LTM nodes and connections

259

9.3.2 Links as associations and as relations
An additional difference between Phaeaco’s conceptual net nd a traditional

Slipnet is that in Phaeaco two nodes can be associated with a ithout this link

implying a node t represents explicitly a relation.

concept 1

concept 1 concept 2

)

Figure 9.5: An association (a), and a relation (b

Figure 9.5a depicts a simple association between two

accompanying explicit relational node. The black dot in t

connecting the two associated concepts is an entity that can

and a significance. But no reference can be made to this a

words, it is an “anonymous relation”. In such cases what the

expressed as: “concept 1 entails concept 2”, or: “the two co

together”, without further elaboration on the nature of their r

However, every co-occurrence of the two concepts incr

their association, and thus its overall weight. When the weig

(which is a parameter of the association), a node repre

association (now called a “relation”) is built, as in Figure 9

dot shown on the link in figures of this text represents nothi

simply records which nodes are connected. The activation a

are now both in the relational node, and the structure is the
work a

 link w

relation
concept 2
tha

(a
)

 c

he

 i

ss

 s

nc

el

ea

ht

se

.5

ng

nd

 s
(b)
oncepts without an

 middle of the link

nclude an activation

ociation — in other

ystem knows can be

epts have been seen

ation.

ses the activation of

 exceeds a threshold

nting explicitly the

b. At that point, the

 but a structure that

 significance values

ame as in a Slipnet.

 Long-Term Memory and Learning

260

Once a relation is built, it cannot be destroyed, i.e., there can be no return to a

simple association.67

The reason for allowing simple associations besides explicit relations in

Phaeaco’s architecture is that not every relation appears to be an explicit concept,

worthy of a “handle” (i.e., a relational node) by which it can be referenced from

(and make references to) other concepts. For instance, most connections between

nodes in a core structure (§9.2.1) are simple associations — too mundane to be

elevated to the status of a relation that can be talked about, and possibly matched

against similar relations. However, associations are not condemned to anonymity

forever. Repetition can cause the association to strengthen, and eventually to

acquire a “label” (a node) that marks it as a relation.

There is also a deeper justification for simple associations. Phaeaco does not

model only the most intricate and commendable accomplishments of human

cognition. Its domain is vision, and humans are not the only animals that see the

world. They are, without doubt, the only animals that can entertain thoughts such

as: “A square is a special case of a rhombus” or “Opposite is the opposite of

similar”. Relations in such thoughts are treated as objects that can be talked about.

In Phaeaco’s conceptual network (and also in any Slipnet), relations are reified as

in Figure 9.5b. But it is doubtful that any animal68 can reify relations as humans

do. If some cognitively complex animals entertain rudimentary representations, it

seems plausible to assume that these consist of simple associations, rather than

explicit (reified) relations. And because human cognition did not spring out of

nonexistence suddenly one day fully equipped with explicit relations, simple

associations must also be an integral part of human visual cognition.

67 However, a relation, as well an association, can be permanently forgotten by means of a
mechanism described in §9.4.2.2.
68 With the possible exception of a few laboratory-raised and trained mammals and birds.

9.4 How to remember, and how to forget 261

9.4 How to remember, and how to forget

Some practical considerations are examined in this section. Specifically, methods

are suggested for locating concepts in LTM without resorting to a sequential

search, and also for discarding “forgotten” concepts and connections, thus

avoiding the eternal expansion of memory to an ever greater size.

9.4.1 Indexical nodes
Some of Phaeaco’s architectural features are dictated by the demand that Phaeaco

function reasonably well even if implemented in computing systems that do not

employ a massively parallel architecture, as the human brain does, but in serial

ones, which compensate for the lack of parallelism with computing speed. In

LTM the lack of parallelism in the underlying hardware is problematic, because if

a new representation must be matched against all existing concepts, it is

impractical to examine each of them in sequence, given that pattern-matching and

categorization are relatively expensive operations.

This problem is solved by the designation of some nodes as “indexical”. An

indexical node can be a copy of any relational or numerosity node of a core

structure. The task of the indexical nodes is to make it possible to locate relatively

quickly a set of candidate concepts for matching with a new representation in the

Workspace. The set can include more candidates than necessary, but must not

miss the concept that most closely matches the given representation. The

indexical nodes stand as a separate layer, or interface between the Workspace and

the rest of the LTM. An example will clarify their creation and use.

Suppose the LTM has not yet learned any new concepts (i.e., it contains only

the primitive concepts that are built into it, such as “slope”, “line segment”, etc.),

and that the representation of a rectangle — already constructed in the Workspace

 Long-Term Memory and Learning

262

— must migra into the LTM. There ar veral relational and numerosity nodes

in the represen tion of a rectangle, show n Figure 9.6.

λ four line segments

A copy of

merely a colle

the conceptual

Workspa

λ

λ

λ

λ

representa
of a rectan

Figur
te

ta

4

four vertices

qual slopes (twice) }
V
4
four right angles

Figure 9.6: Numerosity and

 these nodes is made and

ction of indexical nodes t

 network of the LTM (Fig

Γ

V

Γ

V

V

V

V

 V

 Γ

4

4

2

2

4λ

2

2

LTM ind
ce

4λ

4

4

2

2

2

2 I↔I
tion
gle

I↔I I↔I

I↔I

e 9.7: The LTM index, an inter
e

n

2

I↔I
2

qual lengths (twice) }

I↔I
4

re

 p

ha

ur

ex

fa

s

 i
2

e

2

lational s of a rectangle

laced the “LTM index”, which is

t stand etween” the Workspace and

e 9.7).

2

M

ce betw
two e

two e

 node

into

s “b

LT
V

V

V

V

V

Γ

λ λ

λλ

4λ
4

4

2

2
2

concept
“rectangle”

I↔I
I↔I

een the Workspace and LTM

9.4 How to remember, and how to forget

263

Any reappearance of a rectangle in the input will activate exactly the same

indexical nodes in he LTM index, which in turn will pass their activations to the

core of the concep “rectangle” (only a of the relevant links are shown in

Figure 9.7). Sup o e now that a trapezoi s seen in the input. Figure 9.8 shows

the indexical nod of a trapezoid.

λ four line segments

Figure

This time only

activation, as Figu

V

V

V

V

Workspace

λ

λ

λ

λ

representation
of a trapezoid

Figur
 t

t

s

s

4

four vertices

equal slopes

V
p

e

4

9.8: Indexical (numerosity a

 a subset of the indexic

re 9.9 shows.

V

Γ

V

4

4

2

2

2

2

4λ

LTM index

4 λ

4

2
I↔I

I↔I

e 9.9: A subset of indexical
fe

d

2

nd

a

no
w

i

 relat) nodes of a trapezoid

l nod n the LTM index will receive

2

M

des is
two

ional

es i

LT
V

V

V

V

V

Γ

λ λ

λλ

4λ
4

4

2

2
2

concept
“rectangle”

I↔I
I↔I

 activated by a trapezoid

 Long-Term Memory and Learning

264

Thus, given a trapezoid, the core of the concept “rectangle” will not receive as

much activation as it would if a rectangle were present in the input.

Assume now that the pattern of a trapezoid is judged to not match sufficiently

well with “rectangle”, and so “trapezoid” is also established as a concept in LTM.

Given a new trapezoid in the input, according to the previous discussion, both

“rectangle” and “trapezoid” will receive the same amount of activation, since all

of the indexical nodes of “trapezoid” are also shared by “rectangle”. To force

“rectangle” to receive less activation given a trapezoid, the inactive indexical

nodes of “rectangle” inhibit by a small amount the activation at its core.

The purpose of the indexing scheme is to identify not the conceptual core with

the highest activation, but a set of concepts that receive activations beyond some

threshold. Once such a set of candidate concepts is established, each member of

the set is matched against the given representation to determine the best match.

The nodes of the LTM index are not pre-existing, but are established as new

concepts arrive and reside in LTM, bringing their new indexical nodes with them.

For example, if a triangle is seen next (continuing the previous example of a

rectangle followed by a trapezoid), then indexical nodes such as “three line

segments” and “three vertices” will be added to the LTM index.

9.4.2 Forgetting concepts

9.4.2.1 Justification of forgetfulness
An essential difference between the memory of a computer and a cognitive

memory is that the former is indiscriminate, or “lossless”, storing all information

and making it available forever, whereas the latter is selective and prone to

forgetting. Although forgetting might at first thought appear as a drawback, in

reality it is a mechanism that adds power to memory, rather than detracts from it.

9.4 How to remember, and how to forget

265

One obvious justification for not storing explicitly all memories forever is the

sheer amount of information a biological organism is confronted with in its

environment during its lifetime. Given that brains did not appear suddenly at full

capacity as we know them in our species, but evolved gradually from very simple

neural devices, there was hardly any option but to have the selectivity of memory

built into brains from the very beginning. There is more to forgetting, however.

An issue often mentioned in the literature on learning is the problem of

overgeneralization in the absence of negative examples (e.g., Berwick, 1986). If

the learning system receives both positive and negative examples of a set of

elements to be learned, then there is no problem in reaching a description that

correctly characterizes the set: positive examples expand the “boundary” of the

description of the set toward generalization (see Figure 9.10), and negative

examples prevent it from expanding and including elements not in the set

(Mitchell, 1978). This is part of what is known as “inductive learning”.

Figure 9.10: With both positive and negative examples, the set can be delineated properly

The problem is that in many learning tasks, negative examples are not

available. A child who learns a language, for instance, is seldom (and in some

cultures never) informed of which morphosyntactic generalizations are wrong.

Most linguistic learning is achieved by exposition of positive examples (see, e.g.,

 Long-Term Memory and Learning

266

Brown and Hanlon, 1970; Wexler and Culicover, 1980). But then a question

naturally arises: how is overgeneralization avoided? For example:

• “timidity” is the state or quality of being timid,

• “immensity” is the state or quality of being immense,

• “authenticity” is the quality or condition of being authentic,

but

• “electricity” is not the state (or quality or condition) of being electric.

Some “timid learning” mechanisms have been proposed as an answer, such as

the “subset principle” (Berwick, 1986), in which an inductive system makes the

smallest possible generalization from the given data. However, because inductive

learning systems have no understanding of the importance of features, they often

make faulty generalizations. For example, when a program called IPP learned

about two bombings in India, each of which resulted in two deaths, it generalized

that bombings in India always kill two people (in Schank and Leake, 1990).69

Computational approaches to inductive learning generally suffer for a deeper

reason: they treat all knowledge as eternally present — a consequence of the

dimension of time being absent from computer memory. Because the property of

being lossless is superficially seen as an advantage, few AI system designers have

wondered whether there can be advantages in forgetting some facts. (But see

Roger Schank’s work on dynamic memory for a notable exception (Schank,

1982)).

Consider a system that encounters only positive examples, but does not store

them in memory forever. Instead, each example (each cross in the abstraction of

Figure 9.10) stays in memory for some time, but requires confirmation to justify

69 It is questionable whether IPP had even a rudimentary understanding of “bombing”, “India”,
“death”, “to kill”, “people”, or even “two-ness”, for that matter.

9.4 How to remember, and how to forget

267

its presence, otherwise it gradually fades from memory. Suppose also that the

system has made some wrong generalizations (false positive assumptions). This

situation is depicted in Figure 9.11, in which examples of false positive

assumptions that have not received recent confirmation are shown as crosses with

varying degree of intensity in their color.

Figure 9.11: Inductive delineation of a set using only positive examples and the time dimension

All dark crosses in Figure 9.11 are assumed to be examples that have been

recently activated (confirmed) multiple times. Thus their “weight” remains at a

high level. Crosses outside the set are generalizations that were made by the

system (false positive assumptions) some time ago, but that were never

confirmed, so they have started fading. Some examples in the set are also fading

because they were not confirmed recently, but the hope is that they will be

confirmed in the future, since they are in reality part of the set. The boundary of

the set itself is grayed, because it is not delineated with perfect certainty at any

time. Finally, for the system to succeed, some mechanism analogous to Phaeaco’s

increase of “stability” in the retention of memory is necessary, otherwise all

memory will be eventually erased, given enough time.

An additional possible justification for forgetfulness in cognitive memories is

the selectivity in what must be remembered. As everyone knows, memories are

 Long-Term Memory and Learning

268

not stored photographically (exceptional individuals notwithstanding), but

abstractly. The previous paragraphs justifying inductive learning through

forgetting, for example, cannot be remembered verbatim, but only abstractly.

Similarly, neither the shape that appears in Figure 9.10, nor the locations of the

plus and minus signs can be remembered with absolute accuracy by normal

individuals. As pointed out in FCCA (Hofstadter, 1995a, p. 212), the greater its

conceptual depth, the more important a concept is considered once it is perceived.

If analogy-making is truly at the core of cognition, then literal mindedness cannot

be an essential component of it, because the best analogies involve the most

abstract elements of a situation, or situations. Thus, a deeper understanding

implies some degree of forgetting.

Cases of exceptional individuals with so-called “photographic” memory

appear to confirm this view. Particularly well-known is the case of the mnemonist

“S.”, who was able to recall sequences of random letters and digits listed in the

form of an array on a page, and could recite them in any order (forward,

backward, or diagonally), decades after first seeing them. Nonetheless, the same

individual was incapable of understanding the meaning of a phrase with the

slightest hint of abstraction, such as “the work went underway normally” (Luria,

1968). The reader of Luria’s account of S.’s abilities is left with the impression of

being offered a glimpse into the workings of the memory of a modern computer in

which the superficial and specific have displaced the deep and essential.

9.4.2.2 Forgetting in Phaeaco
For a concept in Phaeaco’s conceptual network to be “remembered” without

being present explicitly in the input, its weight must exceed a certain threshold.

The (long-term) significance alone is insufficient to exceed this threshold, so that

some amount of activation must reach the core node of the concept from its

9.4 How to remember, and how to forget

269

neighboring nodes. The amount of activation that spreads from one node to

another depends on the “length” of the link that connects the nodes (where the

length is a function of the weight of the association or relation, as explained in

§9.3.2). Hence, the more distant two linked concepts are, the harder it is to

remember one given the other. Forgetting is automatically implied by the

tendency of links to “relax” (extend) as time goes by in the absence of any

reinforcement that would cause them to shrink once more. Thus forgetting in

Phaeaco means that, over time, activation cannot reach some concepts.

Even so, that some concepts are unreachable does not imply they are absent

from the conceptual network. It is doubtful whether concepts in human memories

are ever erased completely, but if they are, it probably happens gracefully, with

some synapses devoted to the memory of a concept reassigned to the memory of a

different one. But for a computationally implemented memory, it is probably best

to include some mechanism to actually delete unreachable nodes. Phaeaco does

this implicitly: when its memory is saved permanently on secondary storage, links

with weight at its minimum value (the “limiting activation”, §9.3.1), are not

followed by the algorithm that visits the memory nodes; hence, the nodes that are

unreachable (by any link) are never saved in secondary storage. When the

conceptual network is loaded back into memory, the unreachable nodes are absent

from Phaeaco’s LTM.

9.5 Conclusion: what does “learning” mean?

The notion of “learning” has been used quite extensively in psychology, AI, and

biology, but there is no consensus on what exactly learning is. The problem with

this concept is that everybody has an intuitive understanding of it — as is the case

with “intelligence”, for example. Not only is the concept familiar, but everyone

 Long-Term Memory and Learning

270

believes they have first-person experiences of learning. As a result, the word

“learning” is easy to understand, so it has been used in a variety of instances that

could be described more accurately as “memory update”. The present section is

not an attempt to redefine the meaning of “learning”, but to review very briefly

the ways and domains in which the term has been used, and to contrast them with

the meaning of “learning” as it is used in Phaeaco. Specifically:

• In biology, the notion of habituation is usually associated with the more

general concept of learning. An organism habituates when it stops responding

after repeatedly being exposed to the same stimulus. For example, a spider

that does not consider a species of ants edible learns, after the first few

encounters, to stop rushing to various parts of its cobweb where such ants

keep getting entangled. Organisms as primitive as sea slugs are known to be

able to habituate to repeated stimuli (e.g., Arms and Camp, 1988, p. 577).

Habituation is simulated in Phaeaco’s architecture (though no claim is made

that it is also modeled) in at least one instance: when an idea for a solution to

a BP has been generated and already found to be wrong, it can keep

“bugging” the solution-seeking module, but each time with a diminished

urgency. More about this will be explained in chapter 11.

• In cognitive psychology, forms of memory and learning that have been

explored extensively include classical conditioning, operant conditioning, and

priming (Crick, 1994). Of these, the first two can be thought of as forms of

association-building in Phaeaco, although the specific mechanisms are not

modeled. Priming, however, is the main mechanism in Phaeaco by which the

context can have an effect on perception (see §8.2.3, Equation 8.7).

• In AI, there are a variety of ways in which the term “learning” has been used.

The general term is “machine learning” (e.g., Mitchell, 1997), under which

9.5 Conclusion: what does “learning” mean?

271

several approaches to learning have been considered, including inductive

learning (mentioned in §9.4.2.1), decision-tree learning, Bayesian learning,

genetic algorithms, and, last but not least, artificial neural networks (ANN’s).

None of these methods is related to learning in Phaeaco, except possibly

ANN’s, because some features in Phaeaco’s conceptual network resemble

those of an ANN — a resemblance that can be misleading. Learning in ANN’s

deserves some further elaboration.

Some connectionists assume (often tacitly, to avoid engaging in unproductive

discussions) that theirs is the only “true learning” in the world of computation.

After all, some features in ANN’s appear to be closely approximating those of

brains: recognition from partial input (the filling-in of missing information),

graceful degradation (the network does not crash if some units malfunction), and

a machinery seemingly not tailor-made to the problem at hand, but consisting of

“a number of units”, usually connected in some principled way. But a critical look

at the way ANN’s learn reveals some disturbing properties.

The following example is typical of ANN behavior. Geoffrey Hinton devised

a three-layer network to compute family relationships (Rumelhart, Hinton et al.,

1986). (He intended it to be a demonstration of how error back-propagation works

in ANN’s, but some connectionists have treated it as a genuine theory of

psychology.) After some training, the network could answer questions about who

is related to a named person in a given way. Steven Pinker offers the following

criticism of this ANN, extending it to ANN’s in general (Pinker, 1997, p. 130).

After training the model to reproduce the relationships in a small,
made-up family, Hinton called attention to its ability to generalize to
new pairs of kin. But in the fine print we learn that the network had
to be trained on 100 of the 104 possible pairs in order to generalize

 Long-Term Memory and Learning

272

to the remaining 4. And each of the 100 pairs in the training regime
had to be fed into the network 1,500 times (150,000 lessons in all)!
Obviously children do not learn family relationships in a manner
even remotely like this. The numbers are typical of connectionist
networks, because they do not cut to the solution by means of rules
but need to have most of the examples pounded into them and
merely interpolate between the examples. Every substantially
different kind of example must be in the training set, or the network
will interpolate spuriously, as in the story of the statisticians on a
duck hunt: One shoots a yard too high, the second shoots a yard too
low, and the third shouts, “We got him!”

The thousands of repetitions that are necessary for an ANN to “learn” serve as

an indication of the distance of ANN’s from the methods by which humans learn.

Although even a single input presentation is sufficient for Phaeaco to learn

something new, and a few repetitions are sufficient for the formation of a concept,

these facts will not be used to argue that Phaeaco’s learning is more human-like

than that of ANN’s.

In summary, it is now worth reviewing what “learning” means in Phaeaco:

• Adding concepts: New core structures can be added in the conceptual network

and linked appropriately to existing concepts.

• Enriching known concepts: The statistics of featural nodes, as well as the

strengths of links within a structure, can be updated, resulting in concepts that

reflect in a more informed way the examples that have generated the concept.

• Shortening the “distances” between nodes, making it easier for activation to

spread among them, thus reaching faster from one primed concept to another.

• Forgetting: Phaeaco’s memory can be made to selectively include only

relevant and current information.

CHAPTER TEN

Image Processing
10 Image Processing

As was discussed in chapter 4, if it were expected that some human “helper”

would convert BP’s from their original form (e.g., as printed in Bongard’s book)

to some internal representation (for instance, as in chapter 7) before Phaeaco

could process BP’s further and solve them, the present approach would be at best

unremarkable — perhaps even dishonest, according to §4.1. This chapter explains

how Phaeaco’s retinal level (§4.3) perceives the pixels given as input, acting in

cooperation with the cognitive level. The two levels work in a “pipelined” fashion

(Figure 10.1).

retinal level

cognitive level
Time

Figure 10.1: Pipelined execution of retinal and cognitive levels

Figure 10.1 indicates that the cognitive level (already reviewed in chapters 7–

9) does not wait until the retinal level finishes processing the input entirely, but

starts its work as soon as possible (the exact instant is explained in §10.3.13). This

implies that Phaeaco’s retinal level is not an isolated “module” for image

processing, but is intertwined with the perception at the cognitive level. Indeed,

the retinal level can to some extent receive feedback from the cognitive level,

adjusting the values of some low-level parameters appropriately, so that it “sees”

 273

 Image Processing

274

what the cognitive level “wants” it to see (always within some limits, without

succumbing to flagrant self-deception).70

10.1 The preprocessor

Despite the introductory remarks regarding the intertwined operation of the retinal

and cognitive levels, there is one set of procedures that does act as an independent

module. This is Phaeaco’s visual preprocessor, the purpose of which is to convert

any image — even one of photographic quality — into a black-and-white figure

that corresponds in a very faithful way to the original one. The term “black-and-

white” means that the pixels of the resulting image are exactly as in a BP: either

black or white, as shown in Figure 10.2, with no intermediate shades of gray.

Figure 10.2: Left: original image; Right: black-and-white rendering by the preprocessor

70 For example, if the context contains many circles, the routine responsible for circle detection
(§10.3.12) will become slightly more flexible than usual in accepting a round shape as a circle.

10.1 The preprocessor

275

The reason for including a preprocessor as a first step in Phaeaco’s operation

is the generality of the architecture. Recall that Phaeaco must not be limited to the

BP domain, but must be able to handle any visual input. At present Phaeaco

cannot understand anything that does not belong to a flat geometric world. But if

no attempt were made to design Phaeaco so that it can accept general visual input

(of photographic quality), then some simplifying assumptions about the nature of

the input would undoubtedly be built deep into its architecture, thus hampering

efforts to extend the system in the future.

The preprocessor applies standard image-processing filters to the input pixels

to achieve the desired transformation to a black-and-white figure.

Figure 10.3: First filtered transformation applied on original image (left; result on the right)

For example, Figure 10.3 shows the result of the first such transformation.

The filter consists of the 3 × 3 array of integers shown in Table 10.1. To “apply

the filter” means that the red, green, and blue components of each pixel are

processed independently. For concreteness, focus on the red component, which is

 Image Processing

276

processed as follows: The 3 × 3 array is centered on the pixel to be processed, and

the central value of the array (the number 8 at row 2, column 2) is multiplied by

the “red” component of that pixel. (Color components are usually in the range [0,

255].) At the same time, the red components of the eight neighbors of the current

pixel are multiplied by the integers in the corresponding locations of the 3 × 3

array. The sum of the nine products is added to a so-called “bias factor” of 255. If

the total sum falls outside the allowed range [0, 255], it is truncated to either 0 or

255, accordingly. The resulting value is the new “red” component of the current

pixel. An identical transformation is applied to the green and blue components,

yielding a pixel with modified red, green, and blue components that replaces the

original pixel.

-1 -1 -1

-1 8 -1

-1 -1 -1

Table 10.1: Filter for obtaining the “contours” in an image

It is now a simple matter to produce the desired image on the right of Figure

10.2, having obtained the image on the right of Figure 10.3: every pixel

sufficiently close to white must become white; otherwise it becomes black. The

Euclidean formula for distance can be employed to make the notion of

“closeness” between two colors concrete: each pixel is a 3-tuple (red, green,

blue), so the color-distance dc between two points (r1, g1, b1), and (r2, g2, b2) can be

computed by the formula: () () ()2
21

2
21

2
21 bbggrrdc −+−+−= .

A threshold value t must be used in the above transformation: assuming the

distance dc of each pixel from the color white (255, 255, 255) is computed, then if

10.1 The preprocessor

277

dc < t, the pixel must be converted to white, otherwise to black (0, 0, 0). The value

of t that yields the best results depends on the quality of the image. For now,

Phaeaco uses a fixed threshold, but future extensions must employ some

algorithm to derive it from the properties of the image.

10.1.1 Determining the background color
The preprocessor is not invoked unless the image is a photograph. How is this

determined? Imagine a pre-preprocessing routine that counts the colors of the

pixels: if the number of colors71 is more than two, then the preprocessor is

invoked and converts the image to one with exactly two colors, as just described.

Otherwise (if the colors are exactly two, with whatever exact hue) there is no need

for preprocessing.

However, even after a two-colored image has been obtained, one final

question remains before the image can be considered as input for a BP: which of

the two colors comprises the foreground, and which the background? It is not

always possible to answer this question categorically.72 But for input that can be

used in boxes of BP’s it is usually possible to decide among the two colors.

Phaeaco uses a heuristic to answer this question: it considers the pixels in a

frame around the border (the thickness of the frame is 5% of the width and 5% of

the height of the image). The color that is more than 50% in that frame is deemed

the “background”. (If the heuristic fails, so will Phaeaco in solving the BP.)

Once a decision about the identity of the background color has been made, the

pixels are transferred to an internal array of integers, in which 0 stands for

background, and 1 for foreground. All further processing uses this internal array.

71 Grayscale counts as “colors”, too.
72 For example, consider a checkered image alternating black and white squares.

Image Processing 278

10.2 The pipelined process model

The main image-processing stage (following the preprocessing one) is organized

in a number of processes, labeled by the letters of the alphabet (A, B, C, etc.),

which run in a pipelined fashion, as in Figure 10.4.

Process A
Process B

Proc

.

Figure 10.4: Pipelined

Each process specializes in some

line segments, line intersections, curv

Not all letters of the alphabet corresp

total, to be discussed in §§10.3.1–1

alphabetic order: some might never b

which those processes specialize.

The principle behind this organiza

“lurks” in the background, and start

knows how to operate become availab

A possible criticism of this organ

could be employed in Phaeaco’s im

specific features of the input — som

yet others for curves, and so on — app

73 Recall that the same principle was mentio
and cognitive levels.
.

ess C
Process D

Time

 processes at the retinal level

particular aspect of the input: for example,

es, closed regions, angles, circles, dots, etc.

ond to a process (currently there are 17 in

0.3.17), nor do the processes run in strict

e initiated, if the input lacks the features on

tion of the retinal level is that each process

s working as soon as data upon which it

le.73

ization is that the FARG model of codelets

age-processing stage. Codelets looking for

e for straight lines, others for intersections,

ear ideal as a tool for this task.

ned in the discussion on the pipelining of the retinal

10.2 The pipelined process model

279

The answer is to be found again in Figure 4.9, which conveys pictorially the

philosophy behind Phaeaco’s architecture. If Phaeaco were an attempt to simulate

the functioning of the brain, and in particular the parts of the visual cortex that

process complex visual notions (“shape”, “dent”, “bump”, “turning clockwise”,

etc.), then codelets would be a possible candidate for an architectural framework.

But, as Figure 4.9 suggests, the nature of computer hardware, which is

fundamentally different from that of neural structures, calls for an approach that is

free to utilize the properties of computers at the retinal level and that

simultaneously heeds the requirements of the cognitive level.

Nonetheless, Phaeaco’s pipelined process model is inspired by the way the

primate visual cortex is organized into modules. For example, besides the two

retinas at the front end of the visual system, the visual cortex of primates includes

more than 20 regions (V1, V2, V3, etc., but their labels are not universally

accepted), which are devoted to the perception of line segments, slopes, lengths,

color, motion, etc. (Posner and Raichle, 1994; Thompson, 1993; Zeki, 1993).

There is no one-to-one correspondence between Phaeaco’s processes and the

visual cortex areas, but there is an abstract similarity in organization. For

example, most of the input to area V2 of the cortex is from V1, most of the input

to V3 is from V1 and V2, and so on — a progressive funneling of visual

information (Thompson, 1993, p. 244). Also, receptor cells in V1 are simple,

whereas most of the cells in V2 are of a type called “complex”, and more than

half of the cells in area V3 are “hypercomplex” (ibid., p. 245). A similar

progression in complexity of processing routines and funneling of processed

information also characterizes Phaeaco’s retinal-level organization, which is

explained in detail in the rest of the present chapter.

Image Processing 280

10.3 The retinal processes

10.3.1 Process A
The first retinal process is independent from almost all other processes74. It is also

the simplest, testing pixels of the image at random locations, and ignoring them if

they are 0 (“white” background pixels in a typical BP box), but inserting them in a

queue for further processing (by process B, waiting in the pipeline), if they are 1

(“black” foreground pixels that belong to some object75). Suppose the input is as

shown in Figure 10.5a.

(a) (b)

Figure 10.5: Input for process A: original (a), and magnified ×2 in a visual box (dashed lines) (b)

Figure 10.5 shows the original input on the left. On the right, the input is

shown magnified by a factor of 2 to make individual pixels visible, and is also

placed in a visual box (dashed lines). Process A takes a random sample of pixels

within the visual box, shown in Figure 10.6.

74 See §10.3.10 for an exception.
75 The word “object” at the retinal level will be used to refer to a group of connected pixels.

10.3 The retinal processes

281

Figure 10.6: Sample of random pixels created by process A

Process A samples the entire visual box uniformly, but only the sampled

pixels that are 1 in the input (i.e., not part of the background) are shown in Figure

10.6. The sampling density is a “retinal parameter” of this process. The term

“retinal parameter” will be used to denote a parameter that is not hardwired

directly into the programming code (it is specified in a file of parameters), but is

independent of anything that happens at the higher, cognitive level.

Traditionally in image-processing, a rectangular image is scanned starting at

its top left corner and proceeding in a left-to-right, top-to-bottom fashion to its

bottom right corner. The reasoning is that all pixels of the image would have to be

seen sooner or later, so it is best to scan them in a systematic manner. There are

two reasons for not following the traditional method in Phaeaco.

The first is efficiency. Although eventually Phaeaco will process all input

pixels that are 1, the processes in the pipeline do not need to wait until all pixels

are seen by process A before reaching their first conclusions. Occasionally this

might lead to a situation that appears more like “jumping to conclusions”, rather

than drawing solid and irrefutable results from the given input. But this is

 Image Processing

282

compatible with the philosophy of Phaeaco’s architecture. If any spurious, wrong

conclusions are drawn initially, they will be corrected later by other, more

informed retinal processes. Figure 10.7 explains further the issue of efficiency

gain by offering a preview of the results of retinal processes that will be discussed

soon, following process A.

(a) (b)

Figure 10.7: Traditional sequential processing (a), vs. random processing in Phaeaco (b)

The image in Figure 10.7a can be the partial result of a sequential approach

that, like Phaeaco, does not wait for the entire image to be scanned before

identifying, for example, line segments. Figure 10.7b has the same amount of

“ink” as Figure 10.7a, but the “ink” is spread randomly over the figure. In other

words, the sums of the lengths of the line segments in the two drawings are

identical. Nonetheless, Figure 10.7b has a head start in identifying what the input

is, because some collinear segments can be extended (instantly, from their

equations) to form longer lines; some of these longer lines can be projected and

found to meet at points that are 1 in the input, and therefore possible intersection

points of input lines; and finally, the end-points of some line segments can be

seen as belonging to a circle, so the suspected circle can be created instantly, and

further confirmed by random sampling of points generated from its equation.

Nothing of this is possible in Figure 10.7a, because no algorithm can “guess what

comes next” in a sequential, top-to-bottom scanning of the input.

10.3 The retinal processes

283

A second reason for Phaeaco’s random sampling of pixels is that in this way

randomness becomes woven into the fabric of Phaeaco’s architecture. Cognitive

systems, unlike conventional programs, do not always arrive at exactly the same

conclusions given identical inputs. Phaeaco’s random collection of line segments,

as shown in Figure 10.7b, will be different the next time the same input is

presented. Although at a sufficiently high level the representation of the input will

be identical (“a parallelogram with a circle inside”), the details at a lower level

will differ. This might not appear advantageous in a seemingly unambiguous

figure such as the one examined above, but randomness is at the basis of every

system that can, under more complex conditions, act unpredictably in an

unpredictable world. If humans always acted in a predictable way, they would

hardly feel creative, or be able to justify their feeling of “free will”. This does not

mean that the mere existence of randomness suffices to explain creativity and the

feeling of free will, only that its absence precludes them (Mitchell, 1990).

Process A does not examine random pixels within the visual box indefinitely.

It “self-regulates” its rate of pixel examination, gradually diminishing it, until the

rate drops to zero. It can do this because it monitors the ratio of “hits” (pixels that

are 1, and thus belong to some object, and have not been hit before) to the total

number of pixels examined. The smaller this ratio is, the less time A allocates for

itself to run. (The remaining time is distributed among other processes.)

Eventually the ratio becomes so small that A “knows” it is time to retire.

Occasionally, an isolated pixel can be missed by process A. The probability

for this is quite low, and it is practically zero for a group of four or more pixels.

10.3.2 Process B
The task of this process is to replace the number 1 of each pixel of an object with

another, usually larger integer number, called its “altitude”. The altitude must be

 Image Processing

284

approximately proportional to the distance of the pixel from the closest border of

the object. The more “internal” the pixel is, the higher its altitude must be.

 p q r

Figure 10.8: Pixels at different “depths” in a figure

Figure 10.8 shows three pixels, p, q, and r, of an object. Pixel p is close to the

border of the object, so its altitude must be smaller than the other two; pixel r

must have the highest altitude, not only among p, q, and r, but also probably

among all pixels belonging to this object.

The purpose of process B is to prepare the ground for the next process, C,

which identifies pixels that belong to the endoskeleton of the object (§7.4.9).

The task of processes B and C (combined) is known as “thinning” in the

image-processing literature. Traditionally, thinning is achieved by successively

“peeling off ” pixels that belong to the border of the object, layer after layer:

eliminating one layer of border pixels exposes the next layer of pixels, which now

become the new border, and so on. When no more layers can be peeled off

(because doing so would eliminate the object), the last remaining pixels constitute

(approximately) the endoskeleton of the object. The problem with this thinning

technique is that all pixels must be available before the procedure starts. But this

conflicts with Phaeaco’s fundamental principle that work must start as soon as

input becomes available, even with only partial information, and without waiting

for prior stages to be completed.

10.3 The retinal processes

285

23
p

Figure 10.9: A piece of input (magnified on the right) and concentric squares around a pixel

Process B accomplishes the task of assigning an altitude to each pixel it

retrieves from the queue of pixels created by process A as follows: given a pixel

p, it examines the neighbors of p in successive “concentric squares”, and counts

the number of neighbors that are not 0 (Figure 10.9). The altitude of p is the total

number of its neighbors that are not 0. For example, the first square centered at p

comprises its eight immediately neighboring pixels, so the number of those pixels

that are not 0 is counted (call it n); the next square, concentric to the previous one,

is larger and is made of pixels that surround the previous square; the number of

pixels along the perimeter of the new square that are not 0 is added to n; and so

on. The increase in the size of the concentric squares stops as soon as a pixel is

found that is 0. The final value of n becomes the altitude of pixel p.

Figure 10.9 shows the original input on the left, and a small piece from the

upper-right corner of the parallelogram magnified on the right. The figure shows

how process B would calculate the altitude of pixel p at the center of the

 Image Processing

286

magnified region. Two concentric squares centered at p are shown: the innermost

square consists of the eight immediate neighbors, and the outermost one includes

15 pixels that are not 0 (black), and one which is 0 (white, at the upper-right

corner). Since a 0-pixel is found, the algorithm stops and does not examine larger

concentric squares. The total count of non-0 (black) pixels in the two squares is

 and that is the altitude of p. ,23158 =+

Process B helps process A to concentrate on non-0 pixels by asking A to

examine the eight neighbors of the pixel under B’s focus, instead of other, random

pixels. In this way, B usually manages to compute the altitude of a pixel without

waiting for A to see all the pixels of the input image, in A’s random fashion.

Process B ends when there are no more pixels left in the queue. Like A, it self-

regulates the time allocated for it to run, by monitoring the length of the queue:

the shorter the queue, the more certain B becomes that it is approaching its time to

stop.

10.3.3 Process C
This is a companion of process B, completing the task of identifying the pixels

that belong to the endoskeleton of an object (or “median pixels”, as they are

called in the literature). Process C achieves this by examining each pixel p for

which process B computed its altitude, as well as the altitude of its eight closest

neighbors. Pixel p belongs to the endoskeleton if there are no more than two

closest neighbors with altitudes strictly greater than the altitude of p.

Note that by the above definition, isolated pixels, or pixels that are lined up

forming a line of width 1, belong to the endoskeleton.

Figure 10.10 shows an example of an endoskeleton pixel on the left,

surrounded by its eight neighbors, and a counterexample on the right. The altitude

of each pixel is shown, printed in bold type if it is greater than the altitude of the

10.3 The retinal processes

287

central pixel. On the left, only two neighbors are “taller”, so the central pixel is

deemed part of the endoskeleton. In contrast, on the right there are three taller

pixels, so the central pixel is eliminated from the endoskeleton.

16 18 21
17 19 20
14 17 19

 20 18 21
17 19 20

Figure 10.10: Example of endoskele

Process C usually ends simult

for sensing filled regions: pixels

altitude that exceeds a certain th

small sample of these pixels (selec

sent to process F (§10.3.6) for furt

10.3.4 Process D
Process D is a detector of line seg

C as belonging to the endoskele

process D. The problem that this p

as soon as possible that some pix

are not all immediately available?

For example, consider Figure

available, so it is not clear at all w

pixels have arrived, making the li

right there are enough pixels to le

this be done algorithmically?

14 17 19

ton pixel on the left, and counter-exa

aneously with process B. It is

 that belong to the endoskele

reshold obviously belong to a

ted at random, because not all

her processing.

ments. The pixels that are iden

ton are placed in a queue, w

rocess must solve is: how can

els are approximately collinea

10.11: On the left, very few pi

here the line segments are. In

ne segments barely discernibl

t our visual system see the li
mple on the right

 also responsible

ton and have an

 filled region. A

 are required) are

tified by process

hich is read by

 it be determined

r, given that they

xels have become

 the middle, more

e. Finally, on the

nes. But how can

 Image Processing

288

(a) (b) (c)

Figure 10.11: Successive stages in the accumulation of endoskeleton pixels

Following the principle that data must be used as soon as they become

available, Phaeaco starts forming hypotheses about line segments, even with as

few pixels as those in Figure 10.11a. Most of these hypotheses will be wrong

(“false positives”). But it does not matter. As explained in §9.4.2.1, if these initial

“overgeneralizations” do not receive enough reinforcement in the future, they will

decay as time goes by, whereas correct generalizations will endure. Consequently,

a line-segment detector is a line segment together with an activation value.

Indeed, detectors of all kinds of retinal primitives possess activation co. If

the data are still at the early stage of Figure 10.11a, some ten eakly

activated detectors will be created (Figure 10.12).

Legen

Figure 10.12: Initial tentative line-segment detectors given a few data

Note that essentially all collinearities of three or more poin

marked with a detector in Figure 10.12. The method of least square
 in Phaea

tative w

d:
weaker
activation

stronger
activation
 points

ts have been

s is used to fit

10.3 The retinal processes

289

points to lines, and the activation value of each detector depends both on how

many points participate in it, and how well the points fit. Only one of these

detectors is a “real” one, i.e., one that will become stronger and survive until the

end (the nearly horizontal one at the top); but process D does not know this yet.

Suppose now that more points have arrived, as in Figure 10.13. Some of the

early detectors will probably receive one or two more spurious ts, but their

activation will decay more than they will be reinforced. Also, a fe re spurious

detectors might form. But, simultaneously, the “real” ones will sta pearing.

Legen

Figure 10.13: More data points keep the evolution of detectors in p

Note that several of the early detectors of Figure 10.12 hav

Figure 10.13, because they were not fed with more data points a

the most fit detectors survive at the expense of those that

sufficiently well the data. A subtle aspect of this algorithm is

point has been assigned to a relatively strong detector, it is consid

that detector, so it cannot increase the activation of any other dete

Overall, the procedure is strongly reminiscent of the categori

(§8.3.2) employed at the cognitive level: the notion of a “grou

replaced here by a “line-segment detector made of points”, and

“belonging to a group” is “being close to a detector”. Chro
poin

w mo

rt ap

d:
weak
strong

medium

rogress

e disappeared in

nd “died”. Thus,

do not explain

that once a data

ered “taken” by

ctor.

zation algorithm

p of objects” is

the criterion for

nologically, the

 Im Processing

290

algorithm of process D was designed first, whereas the cognitiv tegorization

algorithm was formed later as an elaboration of the present one.

Legen

Figure 10.14: Most of the survivors are the desired, “real” dete

In Figure 10.14, the desired detectors that form the sides of t

are among the survivors. Also, the tiny detectors that first will

(§10.3.7), then a curve (§10.3.8), and eventually a circle (§10.3.

appearing. In the end, all “true” detectors will be reinforced with

deemed the line segments of the image, whereas all “false” dete

and die.

Process D is also responsible for the detection of lines th

exoskeleton of an object, if the thickness of the object is sufficien

region. The same procedures that were explained in this subse

point (dealing with pixels of the endoskeleton, which are generate

are also applied to pixels of the exoskeleton, which are generat

(§10.3.6).

Process D ends when there are no more pixels to examine in

by processes C and F. Like all other processes, it self-regulates it

slowing down when it senses that its supplier queues are drained o
age

e ca

weak
d:
strong

medium

ctors

he parallelogram

form line strings

12), have started

 more points and

ctors will decay

at belong to the

t to form a filled

ction up to this

d by process C),

ed by process F

the queues filled

s time allotment,

f pixels.

10.3 The retinal processes

291

10.3.5 Process E
This process is concerned with the detection of intersections of line segments

found by process D. As before, intersection detectors have activations, but in this

case they depend entirely on the activations of the line segments that form the

intersection. Thus, this is not an activation that decays autonomously in time, but

is instead a function of the activations of the component line-segment detectors.

This is necessary, because intersections do not receive reinforcement from data

points independently from process D.

The main challenge for process E is to guess correctly where the actual

intersections are, since process D initially can generate any number of spurious

line segments, and therefore spurious intersections as well. To make a guess,

process E examines a small rectangular area around the purported intersection

point: if all pixels in the rectangle are 0, the intersection is ignored (Figure 10.15).

Figure 10.15: Guessing an intersection and examining its neighborhood

Once an intersection is identified as possible, the line segments that form it are

extended up to the point of their intersection. (The dashed lines in Figure 10.15

depict the extension of the line segments.) Occasionally, however, the lines

intersect at a point that coincidentally is close to a non-0 pixel, whereas the line

segments themselves do not reach that point, as in Figure 10.16. For this reason, a

 Image Processing

292

sparse sample of the pixels comprising the extensions of the line segments is also

examined, verifying that the pixels are indeed non-0, i.e., part of the image.

Figure 10.16: The lines on the left, if extended, coincidentally intersect on the line on the right

Process E also records the type of the intersection, i.e., whether it is a vertex,

touch, or cross point (§7.4.2; K-points are discussed later, in process K), and

stores the information into the structure of the intersection detector.

10.3.6 Process F
Process F is concerned with filled (“thick black”) objects. Specifically, it

identifies pixels that lie at the border of a filled region and sends them to process

D, which thus finds line segments that form the exoskeleton of the filled object.

As was mentioned in §10.3.3, some of the pixels with an altitude greater than

a fixed threshold (a retinal parameter) are sent to process F for further treatment.

Figure 10.17 shows what process F does with such pixels.

Figure 10.17: Generation of “rays” from a source pixel, searching for border pixels

As suggested by Figure 10.17, process F treats the pixels it receives as sources

of a number of “rays” (16 in total), along which it searches for border pixels. A

pixel is at the border if three or more of its eight surrounding neighbors are 0.

10.3 The retinal processes

293

Process F repeats this algorithm for all source pixels it receives from process

C. A small number of sources generates a large number of border pixels, so only

very few source pixels are required by process F.

10.3.7 Process M
The shape of the letter “M” is a mnemonic for the task of this process, which

looks for line strings (§7.4.4) among the line segments created by process D:

hence its out-of-order alphabetic position.76 Note that the line strings that this

process discovers do not automatically form corresponding nodes at the cognitive

level, as described in §7.4.4; these are retinal-level line strings, some of which

might be precursors of curves, identified as such by process G (§10.3.8).

Process M “wakes up” as soon as an intersection is detected, and tries to make

longer the line strings created by intersections. The main issue for process M is

that even a simple object with a few intersections usually contains more than one

possibility for parsing it into a collection of line strings. For example, in Figure

10.18 the strings ABCEF, ABDEF, ABCEDB, ECBDEF, EDBCEF, and several

others, are all possible. (For an extreme case, see Figure 7.31.)

A B

C

D

E F

Figure 10.18: Simple input with ambiguous parsing in line strings

If the input contains more than one possibility for a line string, process M will

come up with one particular “parsing” of the input. Since the order of line-

76 Process M must be described before process G, for which it is a prerequisite, because G
examines whether line strings form curves (next subsection).

 Image Processing

294

segment identification by process D is random, except that longer lines are

usually seen first, the line strings that process M identifies are also random, but

biased towards those consisting of longer lines. A subsequent run with the same

input is not guaranteed to parse the input into exactly the same line strings, but

will be biased toward seeing line strings consisting of the longest lines, and with

the largest number of them.

In its attempt for maximization, process M frequently joins small line strings

end-to-end, forming larger ones, and eliminating the “subsumed” smaller strings.

It also notices when line strings form closed loops.

The decrease of activity in processes D and E signals also a corresponding

decrease of activity in process M.

10.3.8 Process G
This is a curve-detector process. As was noted before (in process M), the curves

detected by this process do not automatically form corresponding nodes at the

cognitive level. After all, some of these curves will be further recognized (by

process O, §10.3.12) as circles or ellipses, and therefore will lose their status as

“mere curves”. Thus it is better to describe them as “curve detectors”.77

Process G directs its attention to line strings created by process M, becoming

particularly interested in strings that are made of several relatively short lines,

meeting end-to-end at rather wide (obtuse) angles. The better a line string satisfies

these criteria, the more effort process G exerts trying to see it as a curve.

The algorithm by which process G determines whether a line string is a curve

examines the intersection points of the line string, and tries to discern whether the

77 This is a general remark: all elements identified at the retinal level are “detectors”, suggesting
to the cognitive level what might exist, but not forcing a rigid interpretation of the input. It is the
cognitive level that ultimately decides, considering additional context, what exists in the input.

10.3 The retinal processes

295

object at those points is curved or forms an angle. It is possible that only part of

the line string is curved, with the rest consisting of straight lines; in this case, the

algorithm detects a curve only in the part of the line string that appears curved.

Figure 10.19: Actual curved object and its approximation by a line string

Figure 10.19 shows a curved object (black region) and a superimposed line

string that has been detected by process M, approximating the object.78 Consider

point P, shown in the figure. Process G examines how close the endoskeleton

pixels are to the line string segments in the vicinity of P (Figure 10.20).

Figure 10.20: Closeness of endoskeleton pixels to the tangent line: curve (a); no curve (b)

Figure 10.20a is a magnification of Figure 10.19 at P. The two segments of

the line string that meet at P clearly deviate from the endoskeleton pixels in the

vicinity of P. In contrast, in Figure 10.20b the points of the two line segments and

the endoskeleton pixels essentially coincide.

78 In reality the line string is not so perfect: some of the constituent line segments cross or touch
each other, rather than meeting exactly at the intersection point as shown in the figure.

P

vicinity
of P

vicinity
of P

(a) (b)

 Image Processing

296

Once a piece of a line string has been identified as a curve, there are two steps

that must occur before the operation is considered complete: the line string must

be replaced, either partially or completely, by the curve; and some way must be

established to represent the curve. This is not trivial. The few points of the line

string that have been found to belong to the curve are not sufficient to represent

the entire curve. A representation is needed that can produce any point along the

curve in a continuous manner, so that, for example, the curve can be traced along

its length, or so that its curvature can be computed at any desired point, and so on.

The first step is easy: either the line string is deleted, or what is left of it (after

the curve has been extracted) remains at the retinal level. For the representation of

curves, Phaeaco uses parametric cubic b-splines, explained below.

Suppose the points of the line string from which the curve was derived are P0,

P1, …, Pn (i.e., a total of n + 1 points). Then any four consecutive points (e.g., P0,

P1, P2, P3) define a cubic polynomial a in a unique way. If

we consider only three points (e.g., P

01
2

2
3

3 axaxax +++

0, P1, P2), then there is a family of cubic

polynomials that pass through the three points that depends on a single parameter

(the family has one degree of freedom). If we consider only two points (e.g., P0,

P1), then the family of cubic polynomials that pass through them has two degrees

of freedom. Thus we can fit a cubic polynomial between any two consecutive

points, but it will be “too free” (indeterminate). To restrict its freedom, we can

demand that any two consecutive polynomials (e.g., the one that passes through

points P0 and P1, and the one that passes through points P1 and P2) must be

“smooth” at their common point (not form an angle at P1, i.e., agree on their first

derivative), and also agree on their curvature (i.e., agree on their second

derivative). These two conditions eliminate the two degrees of freedom. If instead

10.3 The retinal processes

297

of a polynomial in standard form we derive parametric equations, i.e., a pair of

polynomials [x(t), y(t)], we end up with the formulas in Equation 10.1.

nibtbtbtbatatatatS iiiiiiiii ,,0],,[)(01
2

2
3

301
2

2
3

3 K=++++++=

Equation 10.1: Parametric cubic b-splines for a curve with n + 1 points

 Equation 10.1 describes only the form of the formulas, but does not reveal the

method by which the coefficients aji and bji, j = 0, ..., 3, i = 0, ..., n, can be

computed. The derivation of these coefficients and an algorithm for computing

their values from a set of n + 1 points are given in Appendix B.

10.3.9 Process H
This role of this process is minor: it performs occasional “corrections” on the

output of process D, the line-detecting process. Due to noise in the manner by

which pixels form lines, sometimes two or more distinct line detectors identify

essentially the same line segment (Figure 10.21).

Figure 10.21: Three line detectors for what should be seen as a single line segment

The example shown in Figure 10.21 is extreme: three line detectors have been

created on what should be seen as a single (probably hand-drawn) straight line. In

this case, process H will unify all three detectors into a single one, with which it

will replace the three original detectors, erasing them from the memory of the

retinal level. The algorithm works equally well with lines of either the

exoskeleton or the endoskeleton.

 Image Processing

298

10.3.10 Process i
Process i detects isolated “dots” in the input.79 A dot is anything too small to be

assigned an explicit shape, even after applying the magnification algorithm

(§10.3.17). The threshold below which something is considered too small to be

given a shape is a retinal parameter.80

Process D, the creator of line detectors, is also the process that “suspects” the

existence of dots: if there is an isolated group of a few pixels, process D fails to

“explain” them with a straight line, but it notices their existence, and summons

process i to verify the presence of a dot.

The algorithm process i uses to identify dots is trivial. The only subtle point

here is that if a fair number of very small dots (e.g., isolated pixels) has been

identified, then this process increases the time allotted to process A, to make sure

no individual pixel will be missed. The reasoning is that if several dots have

already been seen, the odds are that there are more of them in the input.

10.3.11 Process K
Another simple process, again with a mnemonic name, K is assigned the task of

detecting K-points (§7.4.2). Its functioning parallels that of process H, except that

instead of unifying line detectors it unifies intersection detectors that appear to be

too close to each other, replacing them with a single K-point detector.

10.3.12 Process O
Two distinct tasks are undertaken by process O: one is to detect the presence of

closed regions and compute their area; the other is to identify circles or ellipses

among objects already detected as curves.

79 Hence its name in lowercase — the dot of the “i” serving as a mnemonic.
80 A radius of 5 pixels works well at medium screen resolutions.

10.3 The retinal processes

299

To accomplish the first task, process O selects randomly a line string or a

curve. If the object selected is already known to be “closed” (by processes M or

G), there is nothing further to detect. Otherwise, it is still possible that the object

defines a closed region, but that processes M and/or have G failed to realize this

fact (because their algorithms do not specialize in this task, identifying closure

only incidentally). Process O performs a more thorough investigation. In addition,

it detects near-closure, or any degree of closure, using an algorithm already

described in §7.4.7 and depicted in Figure 7.37, which is copied below as Figure

10.22: the ratio of “escaping” rays to the total number of rays is a first estimate of

closure, and repetition of this procedure improves the accuracy of the estimate.

Figure 10.22: Algorithm for computing the closure (or “openness”) of a region

In the case of a completely81 closed region, the algorithm for computing area

is triggered, whereas any other region (whether closed or not) triggers the

algorithm for computing its convex hull. These will be described in §10.3.18.

The second task of process O involves the identification of the only shapes

that Phaeaco is hardwired to recognize: an ellipse in general (in any orientation),

and a circle in particular. It could be argued that Phaeaco should be able to learn

the shape of an ellipse or circle relying on primitives, just as it does for “triangle”.

However, the hardwired solution was preferred as a shortcut. The formulas for

ellipse and circle identification from a set of points are given in Appendix B.

81 “Completely” within the certainty allowed by the described approximating procedure.

“escaping”
rays

 Image Processing

300

10.3.13 Process P
P stands for “perception”. This is the process that serves as an interface between

Phaeaco’s retinal and cognitive levels. Process P remains alert as long as activity

takes place at the retinal level, noticing the appearance of any “detector” (of lines,

intersections, dots, curves, regions, or any detectable object). Its function is to

select a detector (probabilistically, according to the activation of the detector) and

generate the corresponding cognitive-level node that represents it. Nodes are not

merely generated and given to the cognitive level, but placed in the same

structure, if they belong together. For example, two line segments that belong to a

rectangle will cause the creation of two λ-nodes, and process P will make sure to

place them under the same object node (which it will also create).

10.3.14 Process R
This is a cognitive-level process, and its task is to select and run codelets from the

Coderack. That it shares the time with all other processes of the retinal level

means that initially the cognitive level occupies only a very small time slice in the

overall processing of the input. But as the other retinal processes “die” one after

another (because there is nothing left in their input on which to work), process R

is allotted more and more of the available time, until eventually it is nearly the

only process that keeps working.

10.3.15 Process Q
Q is another cognitive-level process, concerned with “quantity” (of anything). For

example, if there are several dots in the input, and representational nodes for them

are being created by process P, this process will notice that there are “many dots”

in the representation. The larger the number, the more probable it is that Q will

notice it (usually a quantity above five yields a very high probability that it will be

10.3 The retinal processes

301

noticed). What happens after noticing the number depends on the type of the node

that appears many times. One course of action (common in all cases) is to slow

down, and eventually cease, the generation of individual nodes representing input

entities, allowing only their numerosity node to be updated. An example of what

else can happen with large quantities is given in the next subsection.

10.3.16 Process S
This is a retinal process concerned with the “shrinking” of objects under certain

conditions. For instance, process Q might have noticed that an object includes a

large number of short lines, as, for example, in Figure 10.23.

Figure 10.23: Object with many small lines

The representation of the object in Figure 10.23 will initially include several

short line segments. But when their number keeps increasing, process Q will

notice this, and besides curbing the proliferation of λ-nodes in the representation,

it will also signal for process S to apply an algorithm that “shrinks” the object,

attempting to perceive its shape by performing the equivalent of looking at it from

a distance. The algorithm works as described below.

If an object is shrunk by a naïve method (e.g., turning a pixel in the smaller

version to 1 if any of the pixels in a corresponding n × n neighborhood of the

original larger object is 1), the result is a failure, because all the imperfections of

the original object are transferred to the miniaturized one. The purpose of

shrinking is to eliminate the imperfections, smoothing out the object as much as

 Image Processing

302

possible. To this end, each pixel in the miniaturized version, instead of being

assigned 1 (“black”) or 0 (“white”), can acquire intermediate (“gray”) values in

the range [0, 1], according to how many black pixels exist in the corresponding n

× n neighborhood of the original object.

Figure 10.24: Conversion of a neighborhood of pixels into a single pixel with “gray” value

Figure 10.24 shows two examples of 3 × 3 neighborhoods of the original

object that are converted to a gray pixel. The example on the left has few black

pixels, hence a lighter gray value; whereas the example on the right has more

black pixels, hence a darker gray value. The result is shown in Figure 10.25.

Figure 10.25: Intermediate step in the shrinking of an object

Finally, the darkest gray pixels of the intermediate fuzzy object can be

converted to black (1) (Figure 10.26).

Figure 10.26: Final step in the shrinking of an object

The result is an object on which the entire set of retinal processes described so

far can be applied, in order to recognize its shape. Naturally, the representation of

the original object in Figure 10.23 will not be merely “an ellipse”, but “an ellipse

10.3 The retinal processes

303

made of many short lines”. Phaeaco cannot reach the description “wiggly line” at

present, because it lacks the image-processing acuity to see the way the short lines

are arranged with respect to each other.

There are two important parameters in the above algorithm: one is the factor

by which the original object is shrunk, and the other is the “fuzziness” factor, i.e.,

the size of each n × n neighborhood that gets converted to a gray pixel. In practice

a shrinking factor of 0.5 and a fuzziness factor of 5 × 5 usually yield acceptable

results.

10.3.17 Process Z
Z is a retinal process that enlarges (“zooms in”) small objects, applying the

magnification algorithm announced in §5.1.5. The algorithm is the same as the

one described in process S. The only difference is in the value of the parameters:

the shrinking factor now becomes a “zooming factor” with a value of 2, and 3 × 3

pixel neighborhoods of the original small object are converted to fuzzier

neighborhoods twice their size (6 × 6). Figure 5.14 shows an example of the

magnification process, reproduced below as Figure 10.27.

(a) (b) (c) (d)

Figure 10.27: Successive steps in zooming small objects

The steps shown in Figure 10.27 are: original input (a); “fuzzy magnification”

(b), as described above; turning gray pixels to black or white using a suitable

threshold (c); and a moderate degree of “thinning” (d).

 Image Processing

304

10.3.18 Other image-processing functions
In addition to the retinal processes, there are many other algorithms for deriving

pixel-based features of the input that can be called when codelets at the cognitive

level examine various facets of the representation. The algorithms for deriving the

convex hull and computing the area of an object are discussed below.

Procedures described in the image-processing literature for computing the

convex hull of a set of points usually assume that all points are available before

the procedure starts. But Phaeaco has to perform all tasks incrementally, not

knowing or anticipating when the input will be completely processed.

(a) (b) (c) (d)

Figure 10.28: Successive stages in the derivation of convex hull

Figure 10.28 shows four successive steps in a convex hull construction. The

point added at step (b) causes the deletion of two edges and one point that

previously belonged to the convex hull (dashed lines). At step (c) the deletion of a

single edge takes place. Finally, at step (d) the new point is ignored.

Last but not least, the computation of the area of an object depends on

whether the object is convex or concave. If it is convex, the area of its convex hull

is computed by a simple triangularization of the object. If the object is concave, a

Monte Carlo method is used: a large number of random points in a box

surrounding the object are generated, and the area is found by dividing the

number of points that are located in the object by the number of points that are

generated in the visual box.

CHAPTER ELEVEN

Putting the Pieces Together
11 Putting the Pieces Together

11.1 How BP’s are solved

Given a BP, Phaeaco constructs a visual pattern from the six boxes of the left

side, and another visual pattern from the six boxes of the right side. It then

compares the patterns, attempting to spot some difference between them. This is

Phaeaco’s method of solving BP’s, in a nutshell.

In §8.3 it was explained that a visual pattern is formed as an “average” of a

group of objects, and at the same time the group itself is being formed. One might

well ask whether, given a BP, Phaeaco discovers on its own the two groups of six

boxes by following its general group-formation principles. The answer is “no”,

because Phaeaco is designed to know what a BP is, and how to handle it. Thus,

the identification of the notion “group of six boxes of a BP side” is not actively

pursued by the program. What is actively pursued is a visual pattern that

summarizes the six boxes on either of the two sides. In some cases, as will be

explained later, more than one visual pattern can be formed on each side.

Three distinct mechanisms that appear to be involved when a person attempts

to solve a BP82 are discussed in the following subsections.

82 Personal observation, in agreement with the intuitions of other, experienced BP solvers. Special
devices would be required to confirm this observation under controlled conditions, such as an eye-
tracking apparatus.

 305

 Putting the Pieces Together

306

11.1.1 First mechanism: hardwired responses
There are exactly two BP’s in Bongard’s collection that can be solved by means

of mechanisms hardwired in the human brain. These are BP #3 (“outlined vs.

filled”, Figure 1.2), and BP #1 (“nothing vs. something”, Figure 1.5).

Figure 11.1: Contrast between colors, white vs. black

Figure 11.1 illustrates the principle behind the solution of such problems. The

human visual cortex includes the color-specializing area V4 (e.g., Zeki, 1993),

which is stimulated immediately and involuntarily given two contrasting colors.

Although the response in V4 is instantaneous, a few seconds are required before

subjects reach the answer for BP #3 (average response time 7.9 s; see Appendix

A). Possibly subjects are slowed down by multiple high-level perceptual

processes that occur simultaneously, such as the perception of the frames of the

visual boxes that interfere with the contrasting colors, and a large number of other

features (shape, size, position, etc.) that compete for attention. In principle,

verification of the solution (i.e., examining the boxes one by one) is unnecessary

for such BP’s; but in BP #3 it is possible that subjects perform a small amount of

verification, because half of the boxes contain very small objects that do not

contribute significantly to the perceived color. In BP #1, the solution is perhaps

initially hinted at by the contrast between the whiteness of the left side and the

existence of black regions and black lines on the right side, but it is expressed as

11.1 How BP’s are solved

307

“nothing vs. something” (or “no object vs. some object”, as Phaeaco puts it),

because it is not logical to see this problem as a contrast between white and black.

There are other BP’s, beyond Bongard’s collection, which also benefit from

the hardware of the brain. Examples are: BP #157 (reversing the foreground and

background colors), BP #158 (“some slope vs. a different slope”), and BP #196

(“light-colored texture vs. dark-colored texture”); see these BP’s in Appendix A.

A hypothetical BP that includes animated figures on the left and still figures on

the right would be another such example, benefiting from area V5 of the visual

cortex, which detects motion.

Phaeaco, like human solvers, reaches the solution of BP#3 very quickly, and

usually (98% of the time) prints the answer without verifying it for each of the 12

boxes. But the mechanisms that Phaeaco uses to achieve this apparent human-like

performance differ from the above-mentioned mechanisms of the human brain.

Specifically, as was mentioned in the introduction to this chapter, Phaeaco

constructs a pattern that summarizes each side. The variety of shapes on each side

of BP #3 results in the formation of a single pattern per side. To understand why

this is so, consider the abstractions in Figure 11.2.

(a) (b) (c)

Figure 11.2: Different cases of group formation depending on the distances between points

Each of the points in Figure 11.2 stands for the representation of the contents

of a BP box. The distance between two points corresponds to the psychological

 Putting the Pieces Together

308

difference between the contents of two boxes. In Figure 11.2a the points are quite

distant from each other, but they form a single group; therefore they can be

summarized by a single pattern-point, which can be imagined at the barycenter of

the group. This situation is analogous to the right side of BP #1, which includes

boxes with shapes that appear as different as shapes can be. In Figure 11.2b the

points do not differ as much, but they still form a single group. This is similar to

either of the two sides of BP #3. Finally, in Figure 11.2c the points form two

distinct groups. There are very few BP’s with boxes on one side that can form

more than one group. An example of such a BP is shown in Figure 11.3.

Figure 11.3: BP #13, in which two groups (patterns) of shapes are perceived per side

On the left side of BP #13 in Figure 11.3 two distinct patterns can be

discerned: vertical rectangles and horizontal ellipses. Similarly, on the right side

there are vertical ellipses and horizontal rectangles.

11.1 ow BP’s are solved

309

Co sider again the case of BP #3. After aco takes a cursory, overall look

at all 2 boxes in parallel, it constructs a pattern for each side. The two

patter typically have the structure shown ure 11.4.

Figure 11.4: Pattern of left a

Figure 11.4 shows only the nodes inclu

the values of the featural nodes generally

example, the average area of the left-side

area of the right-side objects. However,

involves also their variances, and because t

variances, they do not differ significantly. B

different result: the sample of the left sid

outlined, zero variance), and the same is tr

filled, also zero variance). The fact that

visual box

1 object texture

barycenter

x-coord.y-coord.
 Phae

single

in Fig

object

A

H

n

1

ns

1

nd right side of BP #3

ded in the structure of the patterns, but

 differ between the two patterns. For

 objects is different from the average

the statistical comparison of features

he areas of the two patterns have large

ut the comparison of textures yields a

e consists of six identical values (all

ue for the sample of the right side (all

the variance is zero in both samples

area
interior

– +

 Putting the Pieces Together

310

causes Phaeaco to halt immediately and output the correct answer without

verifying it on any of the 12 boxes.

On first thought, it might appear inappropriate for Phaeaco to employ a

mechanism (“zero variance”) very different from the one humans use, only to

solve BP’s in a time comparable to human performance. But this is yet another

example of Phaeaco being faithful to its philosophy, summarized in Figure 4.9:

humans and machines differ fundamentally at lower levels; the challenge is to

make machines converge with humans at higher levels.

Phaeaco homes in quickly on differences in textures for an additional reason:

codelets responsible for registering the texture of objects have high urgencies, and

so textures are among the first features that are seen. This bias was built into the

architecture with the knowledge that perceiving and contrasting colors is similarly

hardwired in humans.

The previous discussion on comparing samples with zero variance suggests a

way that, in theory, should cause Phaeaco to respond in an unhumanlike way. For

instance, consider a BP in which the same object (down to the last pixel) is

repeated six times on the left side, and a slightly different object is repeated six

times on the right side. Conceivably, the sample of object areas on either side

should have a variance equal to zero, and because the average values of the two

compared areas would be different (however slightly), Phaeaco would halt

immediately and announce with absolute certainty the difference in sizes, whereas

the human eye would have trouble discerning the minute difference.

In practice, however, this does not happen. Recall that Phaeaco’s processing is

nondeterministic, because it is randomized at the earliest possible stage (§10.3.1).

Thus, although the areas of the six objects on each side would be very similar, the

probability that they resulted in an identical number would be practically zero.

11.1 How BP’s are solved

311

11.1.2 Second mechanism: the holistic view
Hardwired responses aside, experienced solvers seem to employ an initial strategy

when confronted with a BP, in which they conduct a panoramic overview of the

problem for a brief period of time (perhaps 2–3 seconds), without focusing for too

long on any box in particular, in an attempt to see differences “jumping out” at

them, as quite a few people report. If no difference becomes apparent in this brief

“holistic” comparison of the two sides, they then resort to an “analytic”

examination of individual boxes, which is described in the next subsection.

Phaeaco acts similarly. It processes all 12 boxes in parallel, distributing its

time among the boxes in such a fine-grained manner that for all practical purposes

the processing of the different boxes appears to occur simultaneously. During this

time, patterns for the two sides are formed83 and compared against each other,

applying the group formation methods of chapter 8. If more than one pattern is

generated per side (as in BP #13, Figure 11.3), their disjunction is represented by

placing the patterns under a Necker view node (§7.4.11).

The comparison might reveal that the patterns differ in structure, as in BP #6

(“triangle vs. quadrilateral”, Figure 1.1), or BP #97 (“triangle vs. circle”, Figure

2.7). Another possibility is that something exists in one pattern, but is missing

from the other pattern, as in BP #1 (“nothing vs. something”, Figure 1.5) and BP

#5 (“no curve vs. some curve”, Figure 5.6). A third, and more common, scenario

is that the value of a feature on the left side differs from the value of the same

feature on the right side, as in BP #2 (“large vs. small”, Figure 1.3). The case of

differences in a feature value is worthy of further consideration.

83 A subtle technical point here is that the representation of each box is continually updated as
long as retinal processing takes place, which raises the question of the proper time to consider all
six representations of the boxes and form one or more patterns out of them. Phaeaco waits until
the activation of a box (as explained in §7.2) drops below a threshold. The threshold is low enough
to allow a more-or-less complete representation of the box contents to be formed.

 Putting the Pieces Together

312

Consider again BP #2 (Figure 1.3). Table 11.1 lists the areas in pixels of each

of the 12 objects, as they were found in one particular run by Phaeaco. (These

values differ from one run to the next, since the processing is nondeterministic,

but they have roughly the values given in the table.)

Box Area Box Area

1A 1348 2A 128

1B 1662 2B 134

1C 1986 2C 244

1D 1994 2D 104

1E 2491 2E 133

1F 2570 2F 164

Average: 2008.50 Average: 151.17

Std. dev.: 470.13 Std. dev.: 49.33

Table 11.1: Boxes and areas of objects of BP #2

The two samples can be compared using the methods and formulas of §8.2.

They can also be appr ated by tw ssians, as shown in Figure 11.5.

Figure 11.5: Th
oxim

151.17
e two distributions
o Gau

2008.50

 of areas shown as two Gaussian-like curves

11.1 How BP’s are solved

313

The curves are plotted in Figure 11.5 only for illustration purposes. In reality

the samples are not guaranteed to originate from normal distributions, because the

areas of objects can be arbitrary. But Student’s t distribution (which is used by

Phaeaco, see §8.2.1) generally resembles a normal distribution. Also, the two

curves are shown with equal altitude in Figure 11.5, which is clearly wrong. Since

the area under each curve must equal 1, the second curve must be very flat; but if

it were plotted realistically, it would not be perceived as the Gaussian-like curve

that it is.

In spite of these liberties in Figure 11.5, the salient point is the minute area of

overlap of the two curves. The distributions of the two areas (as suggested by the

two samples), are easily separable, because their intersection is very small. When

this happens, it is easy for Phaeaco to direct its attention to the idea “difference in

areas”. In contrast, if the two suggested distributions were as depicted in Figure

11.6,84 then the probability that Phaeaco would notice the difference is much

smaller.

Figure 11.6: Two difficult to separate distributions

How can Phaeaco’s attention be directed to one feature or another? The

answer is that there are codelets that visit the structures of the patterns, examining

dist

ributions of the coordinates of the cent84 An example would be the ers of the objects in BP #2.

 Putting the Pieces Together

314

their features. These codelets (and their Coderack), which are distinct from those

that create the initial representations in each box (as described in chapter 7),

belong to a higher conceptual level, specifically concerned with the solution of

BP’s. In other words, these are Bongard-specific codelets. Some codelets are

assigned the task of identifying features85 and computing the probability that their

distributions are distinct, as described above. Other codelets follow up the initial

ones, but with an urgency proportional to the probability of a difference in

distributions, as already computed by the initial codelets. Thus, a “sharp”

difference has a higher probability of being noticed than a “fuzzy” one, a

calculation that considers both the inherent significance and the current activation

of the Platonic feature in LTM (Hofstadter, 1995a, p. 226).

Once a featural difference is noticed, Phaeaco forms the idea that this might

be a solution of the given BP. To “form an idea” for a solution in the BP domain

means to construct a pair of representations that describe the idea. For example, if

the idea is that the sizes of objects differ, as in BP #2, then a pair of nodes of the

areas of the patterns suffices. Figure 11.7 shows the representation of this very

simple idea for a solution.

 area

x: 2008.50
s: 470.13

area

different

x: 151.17
s: 49.33

Figure 11.7: An idea for a solution in BP #2

85 The urgency of such codelets depends on the salience of e corresponding Platonic features in
LTM. For example, the urgency of a codelet that compares textures on the two sides generally is
higher than the urgency of one that compares the x- or y-coordinates of barycenters.

th

11.1 How BP’s are solved

315

Ideas for solutions can be far more complex. For example, a solution that

contrasts two different patterns (e.g., “triangle vs. circle”, BP #97) has the entire

patterns connected in the same way the two nodes are connected in Figure 11.7. A

solution based on the presence of something on one side and its absence on the

other side has the structure that is present linked to a special “missing” node.

Next, Phaeaco attempts to verify the validity of the idea by examining each of

the 12 boxes in sequence. During the verification of a featural difference, the

following condition is examined: it is not sufficient that the features differ greatly,

because in BP solutions it must also be true that the ranges of the two samples do

not overlap. For example, following the samples of Table 11.1, the range of the

large areas is from 1348 to 2570, and the range of the small areas is from 104 to

244. Thus, the minimum value of the higher range (1348) is larger than the

maximum value of the lower range (244). If this were not the case, the idea would

be rejected. This observation provides a justification for explicitly storing the

minimum and maximum values in the structure of a statistical table (Table 7.1).

During the verification of the solution, Phaeaco takes a final look at each box

that is being examined. Thus, if the solution is found at the end of the holistic

stage, each box is seen twice: once during the holistic stage (in parallel with all

other boxes), and once more during the verification. The resulting two

representations are matched, and a single pattern is made, akin to a sample of two

elements. Phaeaco does this in order to improve the representation that it obtained

from the single observation during the holistic look of the problem. Recall that

Phaeaco’s vision is not as sharp and accurate as is human vision, so it is

advantageous for it to examine each box once more before issuing a judgment.

If the idea fails to be verified on the pattern thus obtained, it is rejected, and

Phaeaco enters the next, “analytic” stage of trying to solve the BP.

 Putting the Pieces Together

316

11.1.3 Third mechanism: the analytic view
If the holistic stage fails to produce a solution (either because the verification of

an idea failed, or because the patterns of the two sides were identical, and so no

idea for a solution was generated), Phaeaco enters its analytic stage. Individual

boxes are selected nearly randomly (more on this later), and reexamined in an

effort to come up with fresh ideas. But how does Phaeaco come up with new ideas

when the input is given and unchanging?

Part of the answer stems, once more, from Phaeaco’s nondeterministic nature.

When a box is watched multiple times, its contents can be seen in different ways.

These differences can be consequences of the processing that took place in the

other boxes, which can prime concepts in LTM and thus influence the way the

contents of the current box are interpreted. In addition, as was explained in

chapters 7 and 10, a single look at a box does not result in a complete

representation including everything there is to be perceived in the box. On the

contrary, every iteration reveals only a partial view of a box’s contents, but each

partial view enhances the pattern created by the cumulative effect of all the looks.

Suppose, however, that the representations of the boxes do not change at all,

no matter how many times they are seen and re-seen. Even then, Phaeaco would

still try to come up with new ideas for a while. (Later it will be explained what

makes Phaeaco give up.) Codelets are created at this stage to look at

representations in boxes and come up with ideas. For example, if there is a

triangle in a box, a codelet might notice the numerosity node representing “3 line

segments”, and create the idea: “Could this problem be about counting lines?” If

this idea proves unfruitful, probable future ideas include: “Could this problem be

about counting things in general?” and “Could this problem be about 3-ness?”

11.1 How BP’s are solved

317

The urgency of such codelets causes specific ideas to be tested first and their

generalizations later, after the specific ones have failed to solve the problem.

A problem that is also addressed by Phaeaco is the avoidance of verifying

ideas that have already been verified and shown to be wrong. It is natural for an

intelligent system to make errors, but it is an indication of mindlessness to repeat

errors uncritically (Hofstadter, 1985, pp. 526-546). It is not wrong or unhuman to

regenerate an idea — human solvers seem to keep on coming back to the same

failed ideas all the time while solving BP’s — but it is wrong to seriously

consider and proceed to verify a failed idea. Phaeaco solves this problem by

linking all verified-and-failed ideas to a master node (Figure 11.8).

all
ideas

idea 3 idea n idea 2idea 1

Figure 11.8: Representation of tested ideas

Some of the links connecting the master node (“all ideas”) to individual ideas

in Figure 11.8 are shown grayed, reflecting the lower strength of these links. This

is important, because what is shown in Figure 11.8 is not a traditional linked list,

but a more elaborate structure that suggests the solution to an interesting cognitive

problem. To illustrate this, consider the following example.

A person is asked to say the name of a month of the year, at random. The

person answers: “October”. The question is repeated with the condition that the

new random month must be different from the previous one, and the person

answers: “April”. After some repetitions, when the number of randomly generated

 Putting the Pieces Together

318

months approaches (but is not yet equal to) 12, the person will probably pause

briefly, trying to figure out which month names have not yet been used. During

this period of hesitation the person will probably recall a few already generated

names, and will subliminally reject them with a thought that, if expressed in

words, would amount to: “No, I have already said that.” This is the problem that

the representation in Figure 11.8 helps to solve. The mechanism works as follows.

When an idea is generated by a codelet it is compared in parallel86 with all the

ideas linked to the master node, as in Figure 11.8. Although the general pattern-

matching procedure (§8.2) is used for the comparison, the idea is rejected only if

it is identical to one of the verified-and-failed ones. If an identical idea is found,

the strength of the link of that idea is enhanced by an “injection” according to the

way activations increase (§7.2), and the idea is not added to the list. Otherwise,

the idea is added to the list, connected to the master node with a link of strength 1

(the maximum value), and the activation of the master node is enhanced by a

small amount (a discrete step of enhancement, §7.2).

The storing of strengths on the links implies that some of the generated ideas

can be forgotten, because their link strengths dissipate as time goes by and can

become effectively zero. In practice, solution ideas cannot be forgotten in the

short period during which a BP is solved, but the mechanism is general.

Also, suppose the person performing the above-mentioned month-listing

experiment, after succeeding in uttering all 12 months, is given the following

request: “Now forget that you just listed all the months, and let us repeat the

experiment from the beginning: please produce a new random list of the months.”

The person is in a position to succeed in this new task, feeling very small

interference from the previous attempt at producing a list. This ability is also

86 But parallelism is of course implemented by codelet interleaving on sequential machines.

11.1 How BP’s are solved

319

important in Phaeaco’s case: when a new BP is presented, the master node of

ideas of the previous BP is eliminated in the Workspace, along with its linkages,

and a new master node is created for the new problem. The small interference a

person would feel in generating a new list can be explained by the priming of

ideas in the LTM. However, Phaeaco at present does not implement the notion of

copying ideas to the LTM after a BP is solved. (It can prime concepts in LTM, but

does not store ideas, i.e., solutions of BP’s.)

A final question is: when does Phaeaco stop coming up with new ideas and

quit trying to solve the BP? The answer is, when it “feels bored”. Phaeaco’s

boredom in solving BP’s is implemented in a very simple manner: it is the

activation of the master node. Recall that each new idea enhances the activation of

that node by a small amount, but the lack of new ideas causes the activation to

drop gradually. If the activation drops below a certain threshold, Phaeaco gives

up.87 By adjusting the value of the threshold, one can make Phaeaco appear more

or less insistent in solving BP’s, just as human solvers differ in this aspect

according to their personality traits.

In the beginning of this subsection it was mentioned that in the analytic stage

boxes are selected and examined again “nearly randomly”. The selection is not

completely unbiased. Boxes with simpler contents are selected more often. This is

because experienced BP solvers report feeling that it is easier to find the essence

of a BP in a box with simple contents than in a complex one. The simplicity of the

contents of a BP is reflected directly in the simplicity of its representation: an

elementary graph-visiting process can estimate the simplicity of a representation

(e.g., the number of nodes can serve as a crude estimate).

87 Therefore, instead of “boredom”, the opposite term “motivation” appears more appropriate:
when the activation drops below a certain threshold, Phaeaco feels no motivation to continue.

 Putting the Pieces Together

320

Finally, the previous brief description of the process of verification might

erroneously suggest that once an idea fails to be verified on a single box, it is

immediately discarded. But what if 11 of the 12 boxes strongly suggest one idea,

but the twelfth box fails to confirm it? Consider Figure 11.9.

Figure 11.9: The “trickster” BP #192

Most solvers perceive the direction of the orifice in each of the objects in BP

#192 (Figure 11.9). On the left side, it looks like the orifice points to the left,

whereas on the right side it points to the right. Or does it? A closer look at the

bottom-right object of this problem reveals that its orifice points to the left. Could

this be an error? Most solvers focus their attention again and again on this box,

unwilling to discard without further thought an idea that seems to work so well on

all the other boxes. Some conclude that the designer made an error. Others accept

the ineffectiveness of this idea, often proceeding to find the real solution, which is

11.1 How BP’s are solved

321

that the objects on the left are elongated in the vertical direction, whereas the

objects on the right are elongated in the horizontal direction.

Phaeaco does “the same”. If most of the boxes (even on a single side, e.g.,

four or five out of six) have confirmed one idea, but the remaining boxes (one or

two) do not seem to confirm it on the first verification effort, Phaeaco will persist

in trying to verify the idea on the remaining boxes for a while, looking at them

again and again in an attempt to find by chance an alternative view

(representation) of their contents. The stronger the confirmation of the idea from

the remaining boxes, the more Phaeaco will attempt to see the failing box or

boxes. Also, recall that Phaeaco’s low-level vision is not as sharp as the vision of

the human eye, so it is entirely possible that some hard-to-see feature was missed

in the earlier attempts on a box. By looking repeatedly at the input, Phaeaco

increases the probability of noticing what it missed.

11.2 What Phaeaco can’t do

There are a large number of perceptual primitives as well as abstract principles of

visual cognition that must be implemented in any system that aspires to solve all

100 original BP’s (and, consequently, most of the BP’s in the extended collection

of 200, listed in Appendix A). The most important of these primitives and

principles are discussed in the present section. But it must be emphasized that

these have been omitted only from the present implementation of Phaeaco; their

omissions do not constitute basic architectural flaws that cannot be addressed in

 Putting the Pieces Together

322

future enhancements.88 The present section should be construed precisely as a list

of suggested implementational enhancements.

11.2.1 Conjunction of percepts
Often it is necessary to combine two or more notions in order to arrive at the

solution of a BP. A typical example is given in Figure 11.10.

Figure 11.10: BP #28, requiring a combination of simple percepts

The solution of BP #28 (Figure 11.10) is that on the left there are more filled

circles than outlined circles, whereas the relation is reversed on the right side.

Each box of BP #28 uses several concepts (“outlined”, “filled”, “triangle”,

“circle”, etc.), and the solver must select a particular (arbitrary) combination of

88 The title of this section is an allusion to Hubert Dreyfus’s “What Computers [Still] Can’t Do”
(Dreyfus, 1972; 1992), an early philosophical criticism of A.I. But, unlike Dreyfus’s work, which
conveyed an implicit message of what computers will never do, the present section aims merely to
suggest tasks that future BP-solvers can (and must) do.

11.2 What Phaeaco can’t do

323

them to arrive at the solution. The arbitrariness and the combinatorial nature of

the task make such BP’s rather unattractive, and present an understandable

obstacle to human solvers. (Not surprisingly, none of the 21 subjects that

attempted to solve this problem found the solution.) Nonetheless, being able to

combine percepts, consider the resulting groups of objects, and perform a

rudimentary mental combinatorial search is an ability the average human solver

has.89 This ability is also related to the notion of “noise”, considered next.

11.2.2 Screening out “noise”

Figure 11.11: BP #37, where the squares are mere distractors

Almost every time a problem such as BP #28 is presented, a related cognitive

ability is also employed: concentrating only on a part of the available input, and

89 BP #28 should not be used as evidence against this statement, because there are easier BP’s that
support it, including #26, #32, and #81.

 Putting the Pieces Together

324

treating the rest as “noise”. Naturally, noise appears essentially in every BP,

because it is virtually impossible to construct a BP in which every available

percept participates it its solution. Sometimes, however, noise is purposefully

inserted in the input by the designer, turning an otherwise rather easy solution into

a harder (and sometimes more interesting) one.

Figure 11.11 shows BP #37, in which the squares are superfluous. Its solution

is: “triangle above circle vs. circle above triangle” (where “above” means that the

y-coordinates of the centers of the objects are compared). This problem appears in

Bongard’s collection immediately after one that has exactly the same solution but

lacks distractors. When people are presented the two problems in Bongard’s order

(BP #36, BP #37) they usually solve easily BP #37, having been primed with the

solution of BP #36. But if the two problems are not presented in sequence, BP

#37 can prove to be quite hard to solve. In the experiment reported in Appendix

A, subjects were shown BP #37 only after 38 more BP’s had been presented

following BP #36. As expected, although BP #36 proved relatively easy to solve

(correct: 23; incorrect: 2; no answer: 5), BP #37 turned out to be quite difficult

(correct: 3; incorrect: 5; no answer: 17). In general, adding noise can turn some

otherwise easy BP’s into extremely difficult ones.

11.2.3 Applying a suspected solution on all boxes uniformly
Sometimes a solution is suspected on some (perhaps most) boxes, but the contents

of a few other boxes do not lead naturally to this solution. In other words, if the

objects in these exceptional boxes were seen in isolation, it would not be easy to

think of the statement that solves the BP, because it is only in the context of the

entire problem that a different perception of these objects is evoked. An example

of this principle is shown in Figure 11.12.

11.2 What Phaeaco can’t do

325

Figure 11.12: BP #7, necessitating re-parsing of the contents of some boxes

Some of the boxes in BP #7 (Figure 11.12) contain elementary objects that,

out of context, could be described very simply as “an ellipse”, “a rectangle”, and

so on. But other boxes contain complex objects, some of them made out of a large

number of lines, which leads Phaeaco to apply the shrinking algorithm (§10.3.16)

and to derive their convex hulls. These actions generally suffice to allow Phaeaco

see the complex objects as “something elongated”, and even to perceive their

direction, which is vertical on the left, and horizontal on the right. Thus, in order

to reach the solution, the solver constructs a procedure that is applicable in many

boxes:

• Shrink the object and/or derive its convex hull

• Observe that the result is elongated

• Perceive the direction of the primary axis of the elongated object

 Putting the Pieces Together

326

It is necessary to be able to apply uniformly, to all boxes, a procedure that was

created “on the fly”. In this way, the directions of simple objects, such as the

ellipses and rectangles in BP #7, can also be perceived.

A different example will illustrate the need to have the ability to “complexify”

the descriptions of boxes when simpler descriptions are perceived at first.

Figure 11.13: BP #137, where there is something in nothing

Consider BP #137 (Figure 11.13). The empty box on the left side is initially

perceived simply as an empty box. But after one realizes that the solution involves

comparing the number of dots with the number of lines that make up the closed

figure, one can easily see that the empty box stands for the relation: 0 = 0.

Such “forced descriptions” appear all the time in BP’s, especially in those that

require the solver to re-interpret a single object as a degenerate group made of a

single object (see BP’s: #81, #89, #90, #156, #166, and #167).

11.2 What Phaeaco can’t do

327

11.2.4 Pluralitas non est ponenda sine necessitate

Figure 11.14: BP #46, in which Ockham’s razor cannot be ignored

Consider BP #46 (Figure 11.14). Human solvers effortlessly do something that

any programmed solver, such as Phaeaco, must be instructed about explicitly and

painstakingly: they see a circle hidden under a triangle on the left, and a triangle

hidden under a circle on the right. But “in reality” there are no such shapes.

Instead of circles on the left, the raw data contain arcs and circular sectors (plus a

filled circle with a triangular hole). One might claim that in boxes I-A, I-C, and I-

F there is not even a triangle: instead, there is a nearly 270°-wide circular sector

and a line-string, two of whose three line segments are collinear with the two radii

of the circular sector (Figure 11.15a). Why does the human eye never come up

with a description like this, or any of the other ones shown in Figure 11.15, as a

first impression?

 Putting the Pieces Together

328

(a) (b) (c) (d)

Figure 11.15: Unnatural parsing possibilities for box 1C of BP #46

Figure 11.15a

The answer “because the description ‘triangle + circle’ is the only one that

makes sense” begs the question: why does it make sense? A more appropriate

answer is that the description “triangle + circle” is of minimum length. To state it

otherwise, Ockham’s razor can eliminate all possibilities shown in Figure 11.15

because “triangle + circle” is the most parsimonious description of all.90

To arrive at the “minimum length description” a viewer must not only have

visual patterns stored as concepts in LTM, but also be able to perform visual

operations such as continuing curves along their curvature (beyond the points

where they are visibly interrupted), and extending straight lines up to the point of

their intersection. Such operations should appear “irresistible” if they result in

shapes that match very well with LTM concepts. This ability, by the way, also

suggests a way to explain the well-known Kanizsa illusion (Figure 11.16).

Figure 11.16: The Kanizsa triangle illusion

90 It is parsimonious assuming that the viewer is familiar with the visual patterns of a triangle and
a circle; if the viewer were from another world, where “pacman-like” and “angular-C-like” objects
were more familiar than triangles and circles, perhaps the parsing of would be
considered more parsimonious.

11.2 What Phaeaco can’t do

329

11.2.5 Meta-descriptions
Related to the minimum-length description ability (or Ockham’s razor) is the

ability to perceive descriptions (representations) themselves and infer their

properties at a meta-level (Hofstadter, 1979, pp. 656-661). For example, the

decision regarding which of two descriptions is shorter implies “looking at” and

measuring representations. But this is not unusual; indeed, there are many other

situations that would call for representations to be examined. Another example is

the perception of the recursive “depth” of a relation. Besides BP’s #70 and #71

(Figures 1.12 and 1.13, respectively), BP #186 in Figure 11.17 also demonstrates

a relation (“is made of”) generating multiple levels of description.

Figure 11.17: BP #186: one level of detail vs. two levels of detail

 Putting the Pieces Together

330

Being able to reflect upon one’s own thoughts is a hallmark of human-like

intelligence (see also §9.2). Metacat (Marshall, 1999) and Letter Spirit (Rehling,

2001) are systems that reportedly have this ability.

11.2.6 Figure–ground distinction
The problem of distinguishing contents from background (or making a figure–

ground distinction, as it is usually called) was mentioned in the context of retinal

processing (§10.1.1). But this problem is primarily conceptual, which is why the

heuristic described in §10.1.1 appears inadequate. The only BP that addresses this

problem at a conceptual level is BP #98 (Figure 11.18).

Figure 11.18: BP #98, an exercise in figure–ground distinction

11.2 What Phaeaco can’t do

331

BP #98 would be a repetition of BP #6 (“triangles vs. quadrilaterals”)91 if it

were not for the patterned background that interferes with the “main” shapes.

Essentially, Phaeaco already possesses the most important mechanisms for

solving this problem. The key observation is that of all the lines (both straight and

curved) in a box, some “belong together” because they have many common

properties, and so they form the background. The remaining lines do not belong to

the previous larger category and thus make a category of their own (the

foreground). It is a categorization problem. Unfortunately, there are many more

details that prevent Phaeaco’s current implementation from reaching the solution

in this problem,92 but the main principle is already in place.

Interestingly, this type of perceptual problem has been used in recent years to

prevent machines from creating internet accounts, participating in discussion

forums (thus flooding discussions with advertisements), etc. Typically, the user is

presented with input as s 9. If the user cannot type the

alphanumeric characters in ield, it is deemed a computer.

Figure 11.1

91 BP #6 was answered correct
But, surprisingly, BP #98 took
answer: 4). This might be becau
the end (98th), so only the bette
BP-solving task.
92 For example, Phaeaco shoul
should be able to see the simi
applying the correct idea discov
F, and II-E), as discussed in §11
hown in Figure 11.1

 a provided data entry f

LAEDGIB

9: Typical input expected to baffle computers

ly in an average of 19 sec (26 subjects; wrong: 2; no answer: 3).
 only 12 sec for those who solved it (9 subjects; wrong: 3; no
se BP #6 appeared early (3rd), whereas BP #98 appeared close to
r solvers reached it, who meanwhile had gained experience in the

d not get bogged down in the countless intersections of lines, but
larity in wavy lines (currently it cannot), and should insist on
ered in some boxes to the most difficult of the other boxes (I-D, I-
.2.3.

 Putting the Pieces Together

332

Variations of this type of problem exist, but they are all based on the idea of

figure–ground distinction. However, a “Phaeaco” that was free from the burden of

having to solve a BP and was coupled with an optical character-recognition

module could easily solve this problem. The prediction is that web-page designers

in the future will have to resort to cognitive problems that exploit more

quintessentially human abilities if they want a test that will automatically

distinguish humans from computers.

11.3 Summary

The three mechanisms for solving BP’s that are assumed to be employed by

human solvers (hardwired, holistic, and analytical) have been implemented in

Phaeaco in ways that simulate human performance, but do not emulate the human

procedures, especially at the lower, hardwired level. In other words, no claim is

made that Phaeaco accurately models a human BP solver, although there is a

nonzero probability that it could pass successfully a Turing-test inspired

“imitation game” in which Phaeaco’s BP-solving performance could fool a judge,

who would mistake Phaeaco for a person.

There are many important issues that have not yet been incorporated into the

current implementation. However, none of these issues indicates an inherent

limitation of the architecture. Future enhancements implemented within the

existing architectural framework should be able to render solvable most (if not all)

of the BP’s listed in Appendix A.

CHAPTER TWELVE

Beyond Vision
12 Beyond Vision

An assessment of the implications of the present work is offered in this final

chapter, with an emphasis on related philosophical issues.

12.1 On the primacy of vision

According to a well-known view in cognitive science, the most abstract and

seemingly perception-free thoughts in human cognition are based on metaphors of

visual perception. This does not mean that abstract thinking necessarily involves

manipulation of visual images, but that it evolved from explicit, visual-only

perception (e.g., Johnson, 1987; Lakoff and Johnson, 1980). The ample use of

spatiotemporal analogies in language has been used in support of this view: a

person is “above” somebody else in a ranked hierarchy, and scores “below”

average in a test; a mood can be “high”, and a profile “low”; people must get

“over” an unfortunate event, and act “under” “pressure”; a “top” executive

“reshuffles” a “cabinet” from the “bottom-up”, and tries to make “ends” “meet”

by “moving” a “meeting” to a later date; an “appointed” attorney makes a “sharp”

argument “before” the “court”; the list is endless.

The above is compatible with Hofstadter’s view of analogy being at the core

of cognition (§8.4). Each of the above abstractions causes an unintended analogy

between spatiotemporal and conceptual structures, which passes completely

unnoticed, because it has become automated in colloquial language.

 333

 Beyond Vision

334

 If metaphors, or analogies (in Lakoff’s and Hofstadter’s terms, respectively),

are behind such figurative uses of words that originated as primitives from the

visual world, one would expect that a cognitive architecture originally proposed to

solve problems in vision should also be extensible to handle representations that

are less literal, and to some degree more detached from vision. Indeed, some

examples might serve to illustrate how Phaeaco’s structures could be abstracted.

Consider the following sentence:

Joe kissed Mary on the cheek

It conveys not a particular string of English words or Roman letters, but an

idea. The sentence could have been given in Turkish (Yusuf Meryem’i

yanağından öptü), in Greek (ο Ιωσήφ φίλησε τη Μαρία στο µάγουλο), in

American Sign Language, or in any other system capable of expressing this

thought. Suppose a cognitive system already knows the representations of

concepts such as the individuals Joe and Mary (both instances of the concept

“person”), an act of kissing, and how cheeks are related to people. How could

these concepts be put together to form a single thought? Consider starting with

something analogous but simpler, which we already know how to represent in

Phaeaco’s terms:

Line λ1 touches line λ2 at point P

This could be a sentence generated by a module that looks at the input shown

in Figure 12.1 with the purpose of describing in words what it sees.

λ1

λ2

P

Figure 12.1: “Line λ1 touches line λ2 at point P”

12.1 On the primacy of vision

335

If the previous input presents no representational challenge for Phaeaco, a

slightly more challenging situation can now be considered (Figure 12.2).

Figure 12.2: The relation “touches”, abstracted slightly

The objects in Figure 12.2 appear to be related in an analogous way to that of

Figure 12.1. The relation is slightly more complex (how much of the touching

object is hidden under the touched one? If their common region is not a line but a

point, should this information not be included in the representation?) but it can

still be described by the word “touch”. And it is possible to continually make the

relation more complex.

Figure 12.3: Is this the same relation?

 Beyond Vision

336

The object in Figure 12.3 could be a familiar (albeit somewhat primitive)

hammer, or it could be the depiction of an object supporting another one. In any

case, we would probably feel comfortable using a new verb, such as “holds”, or

“supports”, for the relation, and new nouns, such as “head” and “handle” for the

constituent objects. But still there would be little doubt that, given suitable

primitives, all these visual constructs would be analogous, and thus representable

by means of the same principles. More complex representations would result from

adding motion into the picture (e.g., the lower object chasing the upper one), or

turning the objects to animated cartoons of animals, or people, who perform some

complicated act, such as kissing. Finally, a useful (and natural in Phaeaco’s

architecture) next step would be to form a pattern out of many sightings of kissing

acts, so that what is stored in memory is not any particular such act, but kissing in

general. It would also be useful to have an “image generator” available that, given

the kissing pattern, generates an approximate “motion picture” of the event, using

two generic characters as actors. The cognitive system could mentally inspect this

approximation, for example, for drawing conclusions in further thoughts.

But we are still in the visual world. Although the generic kissing pattern is not

grounded in particular individuals, it is still possible for the image generator to

create an approximation of the event, and even to dress it with arbitrary details.

The final, decisive step in abstraction would be to match together a number of

events in which an agent does something to another agent.93 This would leave us

with a mere transitive verb in linguistic terms, and a sentence of the form “X acts

on Y”. There would be no use for the image generator in this case (Figure 12.4).

93 Notice that it is only a peculiarity of English that we are forced to use a specific preposition,
such as “to”. Many other languages are more lenient, using a generic preposition, or none at all.
The most abstract version of this thought does not need to include details such as tense, place,
manner, etc. It is only some languages that force the speaker to be specific.

12.1 On the primacy of vision

337

Figure 12.4: A

The only specificity in

agents, and one is acting o

of abstracting the origina

abstract a relation such

participating agents, thus

line. An abstract K-point

number of agents. Some f

usually expressed as adje

off”) would be expressed

that some languages (inclu

if only abstract “mentales

would correspond to Phae

Naturally, the above is

architectural tapestry of ad

the point that even the mo

cognition — namely, its

primitives, and principles

94 There are languages, such a
be described by a predicate (e.g

agent

act
agent

bstraction for a transitive verb with two arguments

 the representation of Figure 12.4 is that there are two

n the other (the arrow has a direction). This was a result

l visual relation, “touches”. Similarly, it is possible to

as “meet”, which is symmetric with respect to the

replacing the arrow in Figure 12.4 with an undirected

-like relation (§7.4.2) would be one that involves any

eatural nodes (such as “red”) would generalize to ideas

ctives, whereas other featural nodes (such as “tapers

by intransitive verbs. But note that this is a distinction

ding the Indo-European family) force upon speakers;94

e” is concerned, most adjectives and intransitive verbs

aco’s featural nodes.

 an oversimplified sketch of the extremely complicated

ult human cognition. Nonetheless, it serves to illustrate

st complex edifice built by nature and known to human

own self — could be based on well-understood visual

that build upon them.

s Japanese, that use verbal forms to express what in English would
., “is red”).

2 1

338 Beyond Vision

12.2 Does Phaeaco “understand” anything?

As stated, the question in the title of this section is ill-posed. “To understand” is a

concept that initially seems easy to grasp, but close examination reveals it to be

less crisp than it first appears. To be able to give a thorough answer, after first

agreeing on the meaning of the question, it is useful to review the misperception

of “understanding” in John Searle’s Chinese Room thought experiment.

12.2.1 In defense of half of Searle’s Chinese Room
In 1980, Searle published a thought-provoking Gedankenexperiment, known ever

since as “the Chinese Room experiment” (Searle, 1980). In it, he asked the reader

to imagine Searle being locked in a room, from which scripts written in Chinese

can be exchanged with the external world. Some of these scripts are called

“stories”, and others “questions”, but Searle is unaware of that. All he has is

Chinese symbols that mean nothing to him, plus a set of rules written in English,

which of course he understands as a native speaker. The rules tell him how to

combine the symbols together to produce new symbols, which he sends as output

from the room. To the observers (native Chinese speakers), it appears as if there is

a person in the room who understands Chinese just as well as they do. But in

reality (says Searle) there is no one with an understanding of Chinese; it is only a

“formal symbol manipulator” that achieves this. In contrast, if he were to be given

questions in English, he would have no problem answering back in English, but

this time he would have a full understanding of what he was being asked, so he

would need no formal rules to explain to him how to manipulate the English

symbols. In the case of English there is a mind at work; in the case of Chinese

there is only a mindless automaton.

12.2 Does Phaeaco “understand” anything?

339

Searle proposed this thought experiment in support of a view that, by today’s

standards and hindsight, makes a lot of sense. A few years earlier, some AI

researchers, most notably Roger Schank and his colleagues at Yale, had produced

programs they claimed could understand the script of a typical exchange between

a customer and the staff in a restaurant (Schank and Abelson, 1977). For example,

here is how Searle describes these programs:

[S]uppose you are given the following story: “A man went into a

restaurant and ordered a hamburger. When the hamburger arrived

it was burned to a crisp, and the man stormed out of the restaurant

angrily, without paying for the hamburger or leaving a tip.” Now,

if you are asked “Did the man eat the hamburger?” you will

presumably answer, “No, he did not.” Similarly, if you are given

the following story: “A man went into a restaurant and ordered a

hamburger; when the hamburger came he was very pleased with it;

and as he left the restaurant he gave the waitress a large tip before

paying his bill,” and you are asked the question, “Did the man eat

the hamburger?” you will presumably answer, “Yes, he ate the

hamburger.” Now Schank’s machines can similarly answer

questions about restaurants in this fashion.

Searle then went on to claim that such programs have no understanding of the

situation whatsoever, and to support his claim he proposed the Chinese Room

experiment. He said these programs are mere symbol manipulators: they receive

symbols from the external world (a passage in English that describes the story), of

which they have no understanding, because those symbols are not connected to

anything material (e.g., real hamburgers), just like his Chinese symbols are

 Beyond Vision

340

disconnected from the world; those symbols are manipulated by means of formal

instructions (the program); and more symbols are outputted, still not understood.

To a certain extent, Searle’s argument is valid. Early AI programs attempted

to handle too much — much more than was justified by the simplistic theories and

meager computing resources of the time. For example, a real hamburger is too

complex an object to be represented by a “100% fat-free Lisp atom”95 such as

“hamburger”. There is no meaning in a string of letters. Even if this string is

connected to other strings, such as “bread bun”, “beef patty”, “tomato”, and so on,

the whole thing is a pathetic caricature of a representation for a real hamburger,

let alone customers, waitresses, tips, bills, restaurants, etc.

12.2.2 But the other half of the room is empty
Had Searle restricted his critique to Schank’s restaurant scripts, there would be

little against which to argue. Unfortunately, Searle extended his argument to

include any program: anything non-human that engages in information-processing

activity. He rejected even neuronal functionalism (the neuron-for-neuron

replacement by devices functionally identical to the neurons they are replacing).

The only machinery he granted might actually engage in true thinking was a

molecule-for-molecule replica of the human brain. In other words, if the machine

is not made of “the right stuff ”, it cannot think.

Searle’s argument has caused strong reactions, including excellent counter-

arguments and discussion (see Hofstadter and Dennett, 1981). It is unnecessary to

repeat those arguments here. What is relevant is Searle’s conception of

“understanding”. The following is his reaction to the suggestion that

“understanding” might not be a two-valued predicate:

95 Hofstadter’s expression.

12.2 Does Phaeaco “understand” anything?

341

In many […] discussions one finds a lot of fancy footwork about

the word “understanding”. My critics point out that there are many

different degrees of understanding; that “understanding” is not a

simple two-place predicate; that there are even different kinds and

levels of understanding […]; that in many cases it is a matter for

decision and not a simple matter of fact whether x understands y;

and so on. To all of these points I want to say: of course, of course.

But in the rest of his article he shows that he does not accept even the tiniest

bit of such variation in understanding unless the device is made out of the right

stuff: “biological (i.e., chemical and physical) structure [which] is causally

capable of producing perception, action, understanding, learning, and other

intentional phenomena.” What phenomena are “intentional”? What is

intentionality?

Intentionality is by definition that feature of certain mental states

by which they are directed at or about objects and states of affairs

in the world. Thus, beliefs, desires, and intentions are intentional

states; undirected forms of anxiety and depression are not.

Given the above definition, one might think that Searle could allow a system

like Phaeaco to have intentionality, because Phaeaco has mental states. And yet,

no. Phaeaco is not made of the right stuff, and thus is not “causally capable” of

producing perception, etc.

This line of reasoning, which amounts to no more than a philosopher’s

stubborn pontification of what is and is not allowed to be called “mental”, evokes

little patience among most cognitive scientists. For it is unscientific to decide by

decree what is and is not mental, or which type of system is allowed to possess

 Beyond Vision

342

intentionality and which not. Such an attitude introduces an arbiter’s subjective

bias, and it is a violation of scientific objectivity to accept an arbiter’s decision for

answering questions. Scientifically valid answers must be empirical. But, more

fundamentally, the questions themselves (whether some states are “mental”,

whether a system is “intentional”, etc.) are unscientific pseudo-questions, since it

is not possible to answer them in a clear-cut, yes/no manner: there is an entire

spectrum of mentality, intentionality, intelligence, and consciousness, which

ranges from the absolute zero of a stone, to the highest degree known to us, the

adult human mind. An elucidation of this range in all aspects of cognition is

attempted next.

12.2.3 On the inadequacy of classical logic in cognition
Traditions that have been around for thousands of years ought not be abandoned

lightly, particularly if they have proved useful in our quest to understand and

explain our environment. Such a tradition is Boolean logic, which, although it

took its name from George Boole, a 19th century British mathematician, has its

roots in Aristotle’s Prior Analytics (Aristotle, 1992)96, and was developed further

by Augustus De Morgan, Gottlob Frege, Bertrand Russell, Kurt Gödel, and Alfred

Tarski, to name only a few with landmark publications. Traditional Boolean logic

has been enriched with variants that can handle possibility and necessity (modal

logics), and others that deal with uncertain set membership and approximate

reasoning (fuzzy logic). Nonetheless, the dominant mode of thinking among

philosophers (and almost always among laypeople) is that of traditional Boolean

logic. For example, an agent either has a mind or not; has intentionality or not; is

96 Note, however, that the famous syllogism concluding “Socrates is mortal” is not found in this
work. Aristotle used letters to denote abstract syllogisms; the famous one about Socrates is from
Sextus Empiricus (2nd – 3rd C. AD), an Alexandrian and Athenian physician and philosopher.

12.2 Does Phaeaco “understand” anything?

343

conscious or unconscious; and so on. Those who study the philosophy of mind are

often entrapped in this mode of reasoning, and allow no room for gray regions of

uncertainty.97 To see that this framework of thought is unproductive, consider the

example of trying to ascribe the concept of volition to various agents:

• Is a person who suddenly feels a strong need for a cup of coffee, and is

now preparing the coffee maker, etc., willing to have that coffee? Most

people would answer, obviously yes. How else could it be?

• Is a baby who cries, feeling hunger for milk, willing to have milk?

Again most people would answer yes, unwilling to admit less volition

to a member of our own species, although it is not hard to argue that an

adult’s concept of hot coffee is much richer that a baby’s concept of

milk. In Phaeaco’s terms, the conceptual representation of coffee,

reached in the adult’s LTM, would be more complex than the baby’s

representation of milk in an easily quantifiable way.

• Is a pet dog scratching on the front door displaying volition? Does the

dog want to go out for an afternoon walk? Pet lovers would answer

with an emphatic “Yes!” But they would agree that their own concepts

are more complex than those of their dog. People who are not pet

lovers, after overcoming their bias in favor of our species, might agree

that an adult dog’s concepts are more complex than those of a newborn

human.

• Does a goldfish that opens its mouth to swallow a chunk of food want

to eat it? Here the notion starts becoming murky. What does a goldfish

97 This is quite understandable, because one of the unifying themes of Western thought has been
the urge towards absolute clarity and precision. Without this urge, almost certainly none of the so-
called “exact sciences” (astronomy, physics, chemistry, etc.) would exist.

 Beyond Vision

344

know about “food”? Its tiny brain does not appear designed for

entertaining such a concept, because it is not necessary for its survival:

all the fish needs to do is react to a floating object of suitable size by

opening its mouth.

• Does an amoeba want to engulf a tiny piece of algae in the vacuole

that it just created out of two pseudopodia? “Certainly not” is the first

reaction that comes to mind. Amoebas do not have neurons with which

to think; they are unicellular organisms. But the way an amoeba senses

its environment with its pseudopodia, the way it stops in front of

“food” and creates the vacuole exactly where it must be made to

engulf the food, are all actions strongly reminiscent of volition. Does a

living thing need neurons to act as if it has the rudiments of volition?

• Consider also the hydras, jellyfish, corals, anemones, and other

members of the phylum Cnidaria. These animals usually have neurons,

but do not move around in search of their food. Food comes to them.

• Does a molecule of benzene that just lost an atom of hydrogen want to

replace it with another atom of hydrogen (or chlorine, etc.)?

• Does a magnet want to stick on a refrigerator?

Some of these suggestions might appear absurd. But in their entirety they

serve to illustrate the range, and perhaps the origins, of the concept “volition”.

What is more absurd is to attempt to draw a line beyond which volition (and

hence, consciousness) does not exist. Would it be reasonable to draw this line

between our species and anything else? Before there were Homo sapiens there

were Homo erectus, and there was no “first” H. sapiens, only a smooth transition.

Every attempt to define the first conscious individual is arbitrary, unscientific, and

vacuous. The same is true of any attempt to define the first creature with mental

12.2 Does Phaeaco “understand” anything?

345

states, intentionality, and many other notions that are given center-stage roles in

the philosophy of mind.

If it is conceivable to see an Amoeba proteus as nothing more than a chemical

(or biological) machine with the rudiments of volition, it is also conceivable to

assign non-zero cognitive attributes to a computational machine, such as Phaeaco,

which was designed to entertain representations. Phaeaco may not “want” to solve

a BP as soon as it sees one any more than a spider “wants” to consume its prey,

but it can look at the BP, construct representations of its contents, generalize them

to visual patterns, activate concepts in its LTM, and “decide” to look again, and

again if needed, at various parts of its input. How many animal species with

sensing devices made of the “right stuff ” can be claimed to build representations

of what they perceive?

12.3 On the inner “I” and related issues

The discussion in §12.2.3 leads to the conclusion that every complex notion in

cognition, including consciousness and the sense of self, corresponds not to a

simplistic two-valued traditional predicate, but either to a range of continuous

values, or to a multidimensional space. Whichever is the case, every complex

cognitive notion has evolutionary origins. This makes it possible for cognitive

scientists to examine “simpler” versions, much like biologists who, in order to

study the complex human eye, extend their investigation to include eyes in the

entire evolutionary spectrum, starting from simple pigmented light-sensitive spots

on single-celled animals (Dawkins, 1996, p. 85). If biologists benefit by studying

in this way the eye, cognitive scientists might also benefit by similarly studying

the “I”.

 Beyond Vision

346

12.3.1 What it would take for Phaeaco to possess an “I”
As it stands in its current implementation, Phaeaco has no “I”: in a range from 0

to 1 (with the value 1 assigned to human cognition), Phaeaco would be assigned

exactly 0. But the present chapter is not about how Phaeaco is, but about how it

could improve and appear to be. What would it take to develop a sense of “I”?

First note that the BP domain does not appear to be sufficiently conducive to

developing such a sense. The domain includes objects (BP’s) that can be

examined without reference to the agent solving them, or to other agents posing

them. Even if such other agents were included (and a dialogue went on between

solver and problem-poser), the relation between such agents and objects of the

domain would be at best very tenuous and forced.

A different domain that involves agents-with-an-“I” (conscious agents)

participating actively and necessarily in the domain would be more helpful.

Game-playing, particularly of the sort that involves an understanding of the

opponent’s role and psychology (e.g., poker) might seem more fruitful than the

BP-domain for this purpose.

Assuming a suitable domain for experimentation is identified, Phaeaco should

start with a single node representing “I”, devoid of any connections, which would

be as useful a representation as the node for a single object that has made no

connections yet; in other words, its utility would be nil. But each event that

involved Phaeaco, either as the subject or the recipient of an action, would be

recorded and linked to this self-node. Similar nodes for other agents should exist

as well. Eventually an event-ful (“episodic”), very complex memory would

develop around the self-node. The system should also possess a psychologically

plausible sense of real time, because a large part of our sense of “who we are” is

related to a correct chronological ordering of events in our memories.

12.3 On the inner “I” and related issues

347

There would be no single moment in this build-up of the self-node in which

the system would suddenly become conscious. The degree of consciousness

would be correlated with the complexity of the self-node, and the clarity with

which it would be capable of observing itself, introspectively.

In addition, philosophers would feel free to speculate on whether this future,

imagined version of Phaeaco is conscious, but their opinions would be irrelevant

because their minds are not made of the “right stuff ”. Only Phaeaco would be

able to answer authoritatively this question.

12.3.2 Can Phaeaco have subjective experiences (“qualia”)?
“Subjective experiences” is another favorite topic in the philosophy of mind, but

cognitive scientists generally consider it ill-defined. What is interesting in this

case is that programs like Phaeaco make it possible to explore these questions

from a different, “hands-on” perspective. Phaeaco appears to be replicating

(roughly) the perception of an agent with subjective experiences (assuming we are

willing to admit the sensibility of the notion): photons from the external world can

hit a camera (corresponding to the lens of an eye), be directed to the computer’s

screen (corresponding to the retina), and thereby analyzed by Phaeaco, building

representations, and performing complex actions that can only be performed by

people (e.g., coming up with the correct word that describes what exists in the

world). So, could Phaeaco be said to have subjective experiences?

Before attempting to answer this question, the notion of “subjective

experience”, or “qualia”,98 must be clarified. It is not easy to define qualia,

because they are a quintessentially subjective notion (definitions are usually

understood to be objective), so it is easier to describe them by examples. When a

98 Philosophers use the shorter term “qualia” (Latin for “qualities”; singular: “quale”) instead of
“subjective experiences”, and this term will be adopted hereafter for brevity.

 Beyond Vision

348

person experiences the redness of a rose, the smell of burnt rubber, the taste of

licorice, the sound of a dog barking, the pain from having the skin punctured with

a sharp object, the pain of losing a loved one, in every such case the person is

having a mental state that can have both an objective and a subjective (“first-

person”) description. The subjective description, obtained introspectively, is the

“quale”.

Some philosophers claim that qualia are irreducible, non-physical entities that

must be added to the ontology of physics, on a par with mass, energy, time, and

space, in order to obtain a complete view of the world (Chalmers, 1996). Others

think that qualia are first-person illusions: there is nothing in a subjective

experience that cannot also be described objectively (Dennett, 1991, p. 372).

The following thought experiment is sometimes presented as a decisive

argument for the existence of qualia:99

Mary suffers congenitally from complete achromatopsia, i.e., she

can see no colors. She only sees shades of gray, as in black-and-

white photographs. She becomes a brilliant neuroscientist, and is

capable of knowing all that there is to know about color vision.

Technological advancements allow neuroscientists to examine the

human brain as it experiences anything in complete detail, down to

the last synapse, so Mary has 100% knowledge of what happens to

the brain of a normal person while perceiving a colored scene.

Mary likes to visit a colorful garden with flowers (which appear to

her in shades of gray), examining her own brain. One day, progress

in neuroscience makes it possible to correct whatever was

99 Originally proposed by Frank Jackson (Jackson, 1982), but simplified here in some technical
details.

12.3 On the inner “I” and related issues

349

damaged in Mary’s vision, and now she can experience colors. She

goes to the same colorful garden, examines her brain, and notices a

different pattern of neuronal activation. But, looking at the flowers

directly, she exclaims: “So, that is what it is like to see colors!”

This and similar thought experiments100 are used by proponents of the notion

of “irreducible qualia” to claim that although Mary comes to know all there is to

know about color perception, she still experiences something new when she sees

the flowers in color for the first time (Tye, 1986).

But Daniel Dennett has argued that if Mary is assumed to be “omniscient”

regarding color vision, then her surprise upon seeing in colors is unjustified: she

already knows how her brain will react, and she can even predict the feelings that

the colored flowers will give to her, having seen the neural correlates of such

feelings in brains of other people. The reader of this experiment, Dennett argues,

is tricked into “not following directions” (Dennett, 1991, p. 399):

The reason no one follows directions is because what they ask you

to imagine is so preposterously immense, you can’t even try. The

crucial premise is that “She has all the physical information.” That

is not readily imaginable, so no one bothers. They just imagine that

she knows lots and lots — perhaps they imagine that she knows

everything that anyone knows today about the neurophysiology of

color vision. But that’s just a drop in the bucket, and it’s not

surprising that Mary would learn something if that were all she

knew.

100 In Jackson’s original formulation, Mary has normal vision but is raised as a captive in a room
where everything is black-and-white, she is given books and a TV, there are no mirrors (or her
skin is covered in gray paint), and is released one day by her captors into the colorful garden.

 Beyond Vision

350

Possibly the essence of this contention can be better understood if we examine

Mary’s representation of a colored object in her “direct” experience (after she is

cured), and contrast it with her repres n of the “in t” experience.

Figure 12.5: Represent

Figure 12.5 shows a simplificat

representation of the idea “I see a c

sighting should also be part of the figu

“I”

see

see

“I”

Figure 12.6: Representation of “I

In contrast, Figure 12.6 is a repr

that is created in my memory as a re

circle around the representation is

modified in Phaeaco’s Workspace

colored object, including the feelings
entatio

object

ation of “I see a colo

ion of what Pha

olored object”. T

re.

 see my representatio

esentation of the

sult of seeing a c

supposed to be

and LTM as a r

 associated with th
direc

color
re ct”

e ould construct as a

h lings caused by the

n

o

e

d obje

aco c

e fee

object
color

 of a colored object”

thought “I see everything

lored object”. The dashed

encompassing everything

sult of experiencing the

e experience, and possibly

12.3 On the inner “I” and related issues

351

even the “I see” part (not shown in the figure). The difference is that this time

what is seen is not an object causing some feelings, but a representation of the

object (plus the feelings and everything else). This is what Mary, the expert

neuroscientist, would “see” by examining her internal states.

The above, of course, is only a rough sketch, a caricature of what might occur

in reality. But it helps to depict the difference between the two views. It is clear,

for example, that there is a difference between the two views (all philosophers

agree that there is a difference). It also shows that the first view does not miss any

ethereal, non-physical qualia (there are no qualia); it is a representation that is not

examined from the outside, from a third-person perspective. The second view is

precisely a third-person perspective, but, agreeing with Dennett, it does not miss

anything that exists in the first view; it is simply a different, somewhat detached

perspective, and that is the source of the philosophical contention.

12.4 Summary

Vision, the most essential of all senses in primates, forms a fundamental platform

upon which our higher cognitive abilities evolved. Such abilities include our sense

of time, consciousness, self, and even our illusory first-person perspective of the

world.

12.5 A recapitulation of ideas introduced in this thesis

In conclusion, the present work introduced, among others, the following notions:

• Visual representations (chapter 7): a number of visual primitives can be

combined in a principled way to build structures that represent the input.

 Beyond Vision

352

• The use of statistics (chapter 8) for computing a psychological difference

between instances of input, and for creating summary representations

(“visual patterns”) of sufficiently similar input instances.

• A novel algorithm for the formation of groups of representations (§8.3.2).

• An LTM (chapter 9) comprising interconnected concepts, which are visual

patterns that migrated into the LTM; and a practical indexing scheme

(indispensable in serial computers) for accessing the LTM concepts.

• An improvement over the notion of “concepts coming closer together”, as

used in previous FARG architectures, that leads to more reliable long-term

learning (§9.3.1).

• A proposal for how time can be used for learning from positive only

examples without resulting in overgeneralizations (§9.4.2), which implies

that forgetting is not necessarily an undesirable property of cognition.

• The separation of processing into two parts: a computationally intensive

and cognitively inaccessible (“retinal”) level and a more abstract but

accessible (“cognitive”) level, where “accessible” means “what the system

could think and talk about” if it possessed some degree of consciousness

and were equipped with language.

• A vision of convergence between natural and programmed cognition

(§4.3, Figure 4.9), acknowledging the fact that the two are based on

hardware elements with radically different properties, but attaining “mind”

as a common goal.

It is hoped that these ideas, and others introduced in the present thesis, will be

useful for future work in the automation of cognition.

Appendix A: Bongard Problems
The 200 BP’s mentioned in the main text are given below. The first 100 were

designed by Bongard, the next 56 by Hofstadter, and the last 44 by the author.

The results of the experiment described in §3.2 are given in a table next to each

BP. The number of correct answers, average time, and standard deviation are

shown. All times are in seconds. Also shown are: the number of incorrect

answers, their average time, the number of wrong answers, their average time, and

the total number of subjects (sample size). Wherever available, Phaeaco’s

corresponding performance values are shown, from a sample of 100 runs.

 BP #1

Performance Human Phaeaco
Correct 31 100
Avg. time 6.9 7.0
Std. dev. 5.1 0.4
Incorrect 0 0
Avg. time
No answer 0 0
Avg. time
Sample size 31 100

 Empty picture Not empty picture

BP #2
Performance Human Phaeaco
Correct 28 82
Avg. time 13.6 11.2
Std. dev. 9.6 2.5
Incorrect 0 18
Avg. time 13.4
No answer 0 0
Avg. time
Sample size 28 100

 Large figures Small figures

 353

 Appendix A: Bongard Problems 354

BP #3

Performance: Human Phaeaco
Correct 28 99
Avg. time 7.9 4.3
Std. dev. 6.1 0.2
Incorrect 0 1
Avg. time 8.0
No answer 0 0
Avg. time
Sample size 28 100

 Outlined figures Filled figures

BP #4
Performance: Human Phaeaco
Correct 5 20
Avg. time 17.6 8.5
Std. dev. 10.9 0.3
Incorrect 9 3
Avg. time 30.4 9.3
No answer 17 77
Avg. time 37.8 23.8
Sample size 31 100

 Convex figures Concave figures

BP #5
Performance: Human Phaeaco
Correct 28 60
Avg. time 11.0 8.9
Std. dev. 9.1 2.8
Incorrect 2 18
Avg. time 5.0 16.6
No answer 1 22
Avg. time 16.0 21.5
Sample size 31 100

 Polygons Curvilinear figures

Appendix A: Bongard Problems 355

BP #6

Performance: Human Phaeaco
Correct 26 70
Avg. time 18.8 4.4
Std. dev. 16.3 3.8
Incorrect 2 11
Avg. time 26.5 12.5
No answer 3 19
Avg. time 27.7 14.6
Sample size 31 100

 Triangles Quadrilaterals

BP #7
Performance: Human Phaeaco
Correct 27
Avg. time 11.5
Std. dev. 12.3
Incorrect 0
Avg. time
No answer 3
Avg. time 25.7
Sample size 30

 Elongated vertically Elongated horizontally

BP #8
Performance: Human Phaeaco
Correct 24 23
Avg. time 21.0 8.2
Std. dev. 20.9 0.5
Incorrect 0 4
Avg. time 15.4
No answer 7 73
Avg. time 23.0 18.2
Sample size 31 100

 On the right side On the left side

 Appendix A: Bongard Problems 356

BP #9

Performance: Human Phaeaco
Correct 31
Avg. time 10.5
Std. dev. 7.3
Incorrect 0
Avg. time
No answer 0
Avg. time
Sample size 31

 Smooth contours Wiggly contours

BP #10
Performance: Human Phaeaco
Correct 27
Avg. time 12.2
Std. dev. 9.7
Incorrect 2
Avg. time 27.0
No answer 2
Avg. time 26.5
Sample size 31

 Triangles Quadrilaterals

BP #11
Performance: Human Phaeaco
Correct 15 83
Avg. time 23.7 16.3
Std. dev. 13.7 6.4
Incorrect 6 4
Avg. time 38.0 21.3
No answer 10 13
Avg. time 30.6 23.7
Sample size 31 100

 Elongated figures Not elongated figures

Appendix A: Bongard Problems 357

BP #12

Performance: Human Phaeaco
Correct 7
Avg. time 33.1
Std. dev. 14.4
Incorrect 2
Avg. time 21.5
No answer 21
Avg. time 30.5
Sample size 30

Elongated convex hull Not elongated convex
hull

BP #13
Performance: Human Phaeaco
Correct 19
Avg. time 15.5
Std. dev. 7.0
Incorrect 2
Avg. time 9.5
No answer 2
Avg. time 14.0
Sample size 23

Vertical rectangles or Horizontal rectangles
horizontal ellipses or vertical ellipses

BP #14
Performance: Human Phaeaco
Correct 24
Avg. time 15.0
Std. dev. 12.3
Incorrect 0
Avg. time
No answer 1
Avg. time 1.0
Sample size 25

 Large total line length Small total line length

 Appendix A: Bongard Problems 358

BP #15

Performance: Human Phaeaco
Correct 27 99
Avg. time 7.7 7.6
Std. dev. 3.6 0.3
Incorrect 1 0
Avg. time 7.0
No answer 3 1
Avg. time 30.3 22.8
Sample size 31 100

 Closed regions Open regions

BP #16
Performance: Human Phaeaco
Correct 9
Avg. time 29.4
Std. dev. 20.2
Incorrect 5
Avg. time 27.4
No answer 10
Avg. time 21.6
Sample size 24

 Counterclockwise spiral Clockwise spiral

BP #17
Performance: Human Phaeaco
Correct 6
Avg. time 35.5
Std. dev. 23.0
Incorrect 3
Avg. time 15.7
No answer 14
Avg. time 12.9
Sample size 23

 Angle directed inward No inward angle

Appendix A: Bongard Problems 359

BP #18
Performance: Human Phaeaco
Correct 8
Avg. time 16.1
Std. dev. 6.5
Incorrect 2
Avg. time 27.0
No answer 13
Avg. time 13.2
Sample size 23

 Neck No neck

BP #19
Performance: Human Phaeaco
Correct 10
Avg. time 18.7
Std. dev. 10.7
Incorrect 0
Avg. time
No answer 12
Avg. time 12.1
Sample size 22

 Horizontal neck Vertical neck

BP #20
Performance: Human Phaeaco
Correct 5
Avg. time 21.4
Std. dev. 6.2
Incorrect 2
Avg. time 26.0
No answer 15
Avg. time 16.3
Sample size 22

 Dots on same side of neck Dots on different sides

 Appendix A: Bongard Problems 360

BP #21

Performance: Human Phaeaco
Correct 20 34
Avg. time 25.1 16.6
Std. dev. 16.3 3.4
Incorrect 9 20
Avg. time 31.4 43.4
No answer 2 46
Avg. time 42.5 40.1
Sample size 31 100

 Small figure present No small figure present

BP #22
Performance: Human Phaeaco
Correct 11 13
Avg. time 23.9 28.4
Std. dev. 20.2 7.2
Incorrect 3 6
Avg. time 42.0 24.0
No answer 16 81
Avg. time 35.0 23.3
Sample size 30 100

 Areas approximately equal Areas differ greatly

BP #23
Performance: Human Phaeaco
Correct 30 83
Avg. time 9.4 8.5
Std. dev. 5.4 2.5
Incorrect 1 4
Avg. time 20.0 19.5
No answer 0 13
Avg. time 22.5
Sample size 31 100

 One figure Two figures

Appendix A: Bongard Problems 361

BP #24

Performance: Human Phaeaco
Correct 20
Avg. time 21.0
Std. dev. 12.2
Incorrect 3
Avg. time 20.0
No answer 7
Avg. time 31.7
Sample size 30

 Circle present No circle

BP #25
Performance: Human Phaeaco
Correct 22
Avg. time 9.7
Std. dev. 6.9
Incorrect 0
Avg. time
No answer 4
Avg. time 5.3
Sample size 26

 Filled figure is triangle Filled figure is circle

BP #26
Performance: Human Phaeaco
Correct 15
Avg. time 15.7
Std. dev. 10.1
Incorrect 4
Avg. time 17.0
No answer 5
Avg. time 13.6
Sample size 24

 Filled triangle exists No filled triangle

 Appendix A: Bongard Problems 362

Avg. time
Std. dev.
Incorrect 0
Avg. time
No answer 21
Avg. time 20.5
Sample size 21

More filled circles than More outlined circles
outlined circles than filled circles

BP #29
Performance: Human Phaeaco
Correct 3
Avg. time 23.7
Std. dev. 4.1
Incorrect 11
Avg. time 24.5
No answer 11
Avg. time 29.3
Sample size 25

More circles inside than Fewer circles inside
outside than outside

BP #27
Performance: Human Phaeaco
Correct 8
Avg. time 18.1
Std. dev. 16.0
Incorrect 4
Avg. time 50.75
No answer 10
Avg. time 15.8
Sample size 22

 More filled figures More outlined figures

BP #28
Performance: Human Phaeaco
Correct 0

Appendix A: Bongard Problems 363

BP #30
Performance: Human Phaeaco
Correct 7
Avg. time 19.4
Std. dev. 9.9
Incorrect 6
Avg. time 23.8
No answer 12
Avg. time 16.3
Sample size 25

 Self-crossing line No self-crossing line

BP #31
Performance: Human Phaeaco
Correct 18
Avg. time 17.9
Std. dev. 9.4
Incorrect 1
Avg. time 26.0
No answer 5
Avg. time 17.6
Sample size 24

 One line Two lines

BP #32
Performance: Human Phaeaco
Correct 6
Avg. time 14.7
Std. dev. 6.2
Incorrect 1
Avg. time 9.0
No answer 17
Avg. time 27.2
Sample size 24

 Sharp projection No sharp projection

 Appendix A: Bongard Problems 364

BP #33
Performance: Human Phaeaco
Correct 5
Avg. time 48.6
Std. dev. 28.4
Incorrect 3
Avg. time 19.7
No answer 22
Avg. time 37.4
Sample size 30

 Acute angle No acute angle

BP #34
Performance: Human Phaeaco
Correct 30
Avg. time 9.1
Std. dev. 5.6
Incorrect 1
Avg. time 19.0
No answer 0
Avg. time
Sample size 31

 Large hole Small hole

BP #35
Performance: Human Phaeaco
Correct 11
Avg. time 28.2
Std. dev. 17.7
Incorrect 1
Avg. time 21.0
No answer 14
Avg. time 19.0
Sample size 26

Hole parallel to figure Hole perpendicular to
axis figure axis

Appendix A: Bongard Problems 365

BP #36

Performance: Human Phaeaco
Correct 23
Avg. time 20.1
Std. dev. 14.6
Incorrect 2
Avg. time 69
No answer 5
Avg. time 23.6
Sample size 30

 Triangle above circle Circle above triangle

BP #37
Performance: Human Phaeaco
Correct 3
Avg. time 42.0
Std. dev. 24.5
Incorrect 5
Avg. time 27.2
No answer 17
Avg. time 28.5
Sample size 25

 Triangle above circle Circle above triangle

BP #38
Performance: Human Phaeaco
Correct 24
Avg. time 19.8
Std. dev. 11.0
Incorrect 2
Avg. time 19.0
No answer 4
Avg. time 16.3
Sample size 30

 Triangle larger than circle Circle larger than
 triangle

 Appendix A: Bongard Problems 366

BP #39

Performance: Human Phaeaco
Correct 30 65
Avg. time 12.4 4.2
Std. dev. 10.0 0.5
Incorrect 0 29
Avg. time 3.1
No answer 1 6
Avg. time 5.0 5.4
Sample size 31 100

 All lines almost parallel Not all lines parallel

BP #40
Performance: Human Phaeaco
Correct 15
Avg. time 29.1
Std. dev. 12.1
Incorrect 11
Avg. time 25.5
No answer 4
Avg. time 29.0
Sample size 30

 Three collinear points No collinear points

BP #41
Performance: Human Phaeaco
Correct 14
Avg. time 26.0
Std. dev. 11.0
Incorrect 1
Avg. time 15.0
No answer 11
Avg. time 12.7
Sample size 26

 White points are collinear

Appendix A: Bongard Problems 367

BP #42

Performance: Human Phaeaco
Correct 15
Avg. time 13.1
Std. dev. 5.8
Incorrect 1
Avg. time 44.0
No answer 7
Avg. time 17.4
Sample size 23

 Inside points collinear

BP #43
Performance: Human Phaeaco
Correct 14
Avg. time 14.0
Std. dev. 11.1
Incorrect 3
Avg. time 16.7
No answer 5
Avg. time 19.8
Sample size 22

Amplitude increases from Amplitude decreases
left to right from left to right

BP #44
Performance: Human Phaeaco
Correct 6
Avg. time 14.0
Std. dev. 10.1
Incorrect 2
Avg. time 16.5
No answer 13
Avg. time 19.9
Sample size 21

 Circles on different curves Circles on same curve

 Appendix A: Bongard Problems 368

BP #45

Performance: Human Phaeaco
Correct 29
Avg. time 15.0
Std. dev. 12.9
Incorrect 0
Avg. time
No answer 2
Avg. time 42.5
Sample size 31

 Outlined on top Solid on top

BP #46
Performance: Human Phaeaco
Correct 15
Avg. time 17.7
Std. dev. 11.0
Incorrect 3
Avg. time 45.0
No answer 8
Avg. time 16.5
Sample size 26

 Triangle on top Circle on top

BP #47
Performance: Human Phaeaco
Correct 31
Avg. time 11.0
Std. dev. 4.1
Incorrect 0
Avg. time
No answer 0
Avg. time
Sample size 31

 Triangle inside circle Circle inside triangle

Appendix A: Bongard Problems 369

BP #48

Performance: Human Phaeaco
Correct 26
Avg. time 21.8
Std. dev. 16.2
Incorrect 1
Avg. time 63
No answer 3
Avg. time 33.7
Sample size 30

Filled objects above Outlined objects above
outlined ones filled ones

BP #49
Performance: Human Phaeaco
Correct 23
Avg. time 19.3
Std. dev. 8.4
Incorrect 0
Avg. time
No answer 4
Avg. time 7.0
Sample size 27

 Inside points close together Inside points far apart

BP #50
Performance: Human Phaeaco
Correct 7
Avg. time 22.7
Std. dev. 6.7
Incorrect 5
Avg. time 21.4
No answer 16
Avg. time 30.5
Sample size 28

 At least one axis of
 symmetry

 Appendix A: Bongard Problems 370

BP #51

Performance: Human Phaeaco
Correct 19
Avg. time 32.1
Std. dev. 21.8
Incorrect 2
Avg. time 28.5
No answer 9
Avg. time 34.3
Sample size 30

At least two circles close to No two circles close to
each other each other

BP #52
Performance: Human Phaeaco
Correct 16
Avg. time 20.6
Std. dev. 16.1
Incorrect 0
Avg. time
No answer 6
Avg. time 15.7
Sample size 22

 Arrows disagree Arrows agree

BP #53
Performance: Human Phaeaco
Correct 7
Avg. time 29.3
Std. dev. 10.9
Incorrect 5
Avg. time 41.0
No answer 14
Avg. time 33.3
Sample size 26

Inside polygon has fewer Inside polygon has
sides than outside more sides than outside

Appendix A: Bongard Problems 371

BP #54

Performance: Human Phaeaco
Correct 1
Avg. time 38.0
Std. dev.
Incorrect 2
Avg. time 9.0
No answer 17
Avg. time 16.6
Sample size 20

Counterclockwise: triangle, Clockwise: triangle,
circle, cross circle, cross

BP #55
Performance: Human Phaeaco
Correct 6
Avg. time 25.0
Std. dev. 10.1
Incorrect 2
Avg. time 40.0
No answer 10
Avg. time 13.4
Sample size 18

 Circle left of cavity Circle right of cavity

BP #56
Performance: Human Phaeaco
Correct 22 19
Avg. time 14.0 30.4
Std. dev. 13.1 7.2
Incorrect 4 17
Avg. time 25.3 20.1
No answer 5 64
Avg. time 25.8 34.9
Sample size 31 100

 All objects have the
 same texture

 Appendix A: Bongard Problems 372

BP #57

Performance: Human Phaeaco
Correct 14
Avg. time 16.1
Std. dev. 9.5
Incorrect 13
Avg. time 16.2
No answer 2
Avg. time 5.5
Sample size 29

 Identical figures

BP #58
Performance: Human Phaeaco
Correct 4
Avg. time 10.0
Std. dev. 1.4
Incorrect 2
Avg. time 22.0
No answer 10
Avg. time 16.6
Sample size 16

 Two identical filled
 squares

BP #59
Performance: Human Phaeaco

13.3
Std. dev. 6.4
Incorrect 0
Avg. time
No answer 3
Avg. time 7.3
Sample size 18

 Similar objects

Correct 15
Avg. time

Appendix A: Bongard Problems 373

BP #60

Performance: Human Phaeaco
Correct 5
Avg. time 26.0
Std. dev. 15.3
Incorrect 2
Avg. time 21.0
No answer 9
Avg. time 10.9
Sample size 16

 Some similar figures No similar figures

BP #61
Performance: Human Phaeaco
Correct 25
Avg. time 14.7
Std. dev. 7.7
Incorrect 0
Avg. time
No answer 5
Avg. time 29.2
Sample size 30

 Equal number of crosses on
 the two sides of the line

BP #62
Performance: Human Phaeaco
Correct 8
Avg. time 34.0
Std. dev. 16.0
Incorrect 2
Avg. time 15.5
No answer 18
Avg. time 29.3
Sample size 28

 Ends of curve are far Ends of curve are close
 apart together

 Appendix A: Bongard Problems 374

BP #63

Performance: Human Phaeaco
Correct 15
Avg. time 9.5
Std. dev. 4.2
Incorrect 0
Avg. time
No answer 1
Avg. time 19.0
Sample size 16

Object shaded on the Object shaded on the
right side left side

BP #64
Performance: Human Phaeaco
Correct 1

19.0
Std. dev.
Incorrect 2
Avg. time 30.5
No answer 12
Avg. time 11.75
Sample size 15

 Ellipse point to the cross Ellipse points to the
 circle

BP #65
Performance: Human Phaeaco
Correct 15

20.5
Std. dev. 8
Incorrect 2
Avg. time 72.0
No answer 13
Avg. time 43.3

30

 Horizontal triangle group Vertical triangle group

Avg. time

Avg. time

Sample size

Appendix A: Bongard Problems 375

BP #66

Performance: Human Phaeaco
Correct 21
Avg. time 17.5
Std. dev. 10.1
Incorrect 0
Avg. time
No answer 8
Avg. time 13.8
Sample size 29

 Loose circles horizontal Loose circles vertical

BP #67
Performance: Human Phaeaco
Correct 9
Avg. time 34.3
Std. dev. 16.3
Incorrect 7
Avg. time 37.9
No answer 13
Avg. time 21.3
Sample size 29

Right branch begins higher Right branch begins
than left branch lower than left branch

BP #68
Performance: Human

Std. dev.
Incorrect 3
Avg. time 17.0
No answer 11
Avg. time 15.7
Sample size 14

Right branch ends higher Right branch ends
than left branch lower than left branch

Phaeaco
Correct 0
Avg. time

 Appendix A: Bongard Problems 376

BP #69

Performance: Human Phaeaco
Correct 15
Avg. time 10.5
Std. dev. 5.3
Incorrect 0
Avg. time
No answer 1
Avg. time 18.0
Sample size 16

 Dot on tip of trunk Dot on tip of branch

BP #70
Performance: Human Phaeaco
Correct 19
Avg. time 28.4
Std. dev. 17.9
Incorrect 3
Avg. time 21.3
No answer 7
Avg. time 29.9
Sample size 29

 One level of branching Two levels of
 branching

BP #71
Performance: Human Phaeaco
Correct 15
Avg. time 34.6
Std. dev. 14.3
Incorrect 6
Avg. time 42.2
No answer 9
Avg. time 41.8
Sample size 30

 Two levels of inside-ness One level of
 inside-ness

Appendix A: Bongard Problems 377

BP #72

Performance: Human Phaeaco
Correct 4
Avg. time 39.5
Std. dev. 19.8
Incorrect 3
Avg. time 57.0
No answer 23
Avg. time 30.2
Sample size 30

 Curve ends are parallel Curve ends are
 perpendicular

BP #73
Performance: Human Phaeaco
Correct 0
Avg. time
Std. dev.
Incorrect 1
Avg. time 8.0
No answer 14
Avg. time 15.2
Sample size 15

Rectangle perpendicular to Rectangle parallel to
ellipse ellipse

BP #74
Performance: Human Phaeaco
Correct 11
Avg. time 12.2
Std. dev. 5.0
Incorrect 3
Avg. time 10.7
No answer 1
Avg. time 2.0
Sample size 15

 Tail at the rounded end Tail at the pointy end

 Appendix A: Bongard Problems 378

BP #75

Performance: Human Phaeaco
Correct 26
Avg. time 16.6
Std. dev. 9.2
Incorrect 0
Avg. time
No answer 4
Avg. time 32.25
Sample size 30

Triangle on the concave Triangle on the convex
side of the arc side of the arc

BP #76
Phaeaco Performance: Human

Correct 9
11.4

Std. dev. 5.2
Incorrect 1
Avg. time 17.0
No answer 4
Avg. time 7.3
Sample size 14

 Long sides concave Long sides convex

BP #77
Performance: Human Phaeaco
Correct 18
Avg. time 29.6
Std. dev. 22.0
Incorrect 3
Avg. time 24.3
No answer 9
Avg. time 31.2
Sample size 30

 Two equal angles

Avg. time

Appendix A: Bongard Problems 379

BP #78

Performance: Human Phaeaco
Correct 8
Avg. time 32.4
Std. dev. 14.5
Incorrect 0
Avg. time
No answer 22
Avg. time 29.0
Sample size 30

 Lines meet at imaginary
 point

BP #79
Performance: Human Phaeaco
Correct 1
Avg. time 26.0
Std. dev.
Incorrect 0
Avg. time
No answer 15
Avg. time 11.6
Sample size 16

Filled circle closer to Filled circle closer to
outlined circle triangle

BP #80
Performance: Human Phaeaco
Correct 1
Avg. time 26.0
Std. dev.
Incorrect 0
Avg. time
No answer 14
Avg. time 11.5
Sample size 15

 Dots equidistant from
 cross

 Appendix A: Bongard Problems 380

BP #81

Performance: Human Phaeaco
Correct 13
Avg. time 13.7
Std. dev. 6.2
Incorrect 6
Avg. time 29.0
No answer 12
Avg. time 55.0
Sample size 31

 Filled and outlined groups Filled and outlined
 are separate groups overlap

BP #82
Performance: Human Phaeaco
Correct 0
Avg. time
Std. dev.
Incorrect 1
Avg. time 66.0
No answer 29
Avg. time 34.9
Sample size 30

 Convex hull of crosses is
 equilateral triangle

BP #83
Performance: Human Phaeaco
Correct 22
Avg. time 23.6
Std. dev. 11.4
Incorrect 2
Avg. time 16.0
No answer 6
Avg. time 19.5
Sample size 30

 Circle in convex hull of
 crosses

Appendix A: Bongard Problems 381

BP #84

Performance: Human Phaeaco
Correct 31
Avg. time 12.6
Std. dev. 7.6
Incorrect 0
Avg. time
No answer 0
Avg. time
Sample size 31

Square out of region made Square in region made
by circles by circles

BP #85
Performance: Human Phaeaco
Correct 27 94
Avg. time 20.5 11.5
Std. dev. 8.1 4.3
Incorrect 2 0
Avg. time 34.5
No answer 1 6
Avg. time 2.0 13.1
Sample size 30 100

 Three lines Five lines

BP #86
Performance: Human Phaeaco
Correct 8
Avg. time 45.3
Std. dev. 25.6
Incorrect 8
Avg. time 43.6
No answer 15
Avg. time 26.7
Sample size 31

 Three line strings meeting Five line strings
 at a K-point meeting at a K-point

 Appendix A: Bongard Problems 382

BP #87

Performance: Human Phaeaco
Correct 16
Avg. time 33.4
Std. dev. 16.9
Incorrect 2
Avg. time 40.0
No answer 12
Avg. time 29.8
Sample size 30

 Four line segments Five line segments

BP #88
Performance: Human Phaeaco
Correct 16
Avg. time 21.6
Std. dev. 16.0
Incorrect 0
Avg. time
No answer 14
Avg. time 17.6
Sample size 30

 Three ovals Five ovals

BP #89
Performance: Human Phaeaco
Correct 6
Avg. time 35.7
Std. dev. 24.2
Incorrect 5
Avg. time 62.0
No answer 19
Avg. time 30.8
Sample size 30

 Three groups of ovals Five groups of ovals

Appendix A: Bongard Problems 383

BP #90

Performance: Human Phaeaco
Correct 2
Avg. time 36.0
Std. dev. 19.8
Incorrect 0
Avg. time
No answer 12
Avg. time 17.7
Sample size 14

Three groups of outlined Four groups of outlined
ovals ovals

BP #91
Performance: Human Phaeaco
Correct 18
Avg. time 32.0
Std. dev. 15.4
Incorrect 0
Avg. time
No answer 12
Avg. time 22.8
Sample size 30

 Three Four

BP #92
Performance: Human Phaeaco
Correct 6
Avg. time 21.0
Std. dev. 12.6
Incorrect 0
Avg. time
No answer 9
Avg. time 11.1
Sample size 15

 One curve More than one curve

 Appendix A: Bongard Problems 384

BP #93
Performance: Human Phaeaco
Correct 3
Avg. time 27.7
Std. dev. 2.5
Incorrect 0
Avg. time
No answer 17
Avg. time 15.4
Sample size 20

Outlined circle at cross Filled circle at cross
point point

BP #94
Performance: Human Phaeaco
Correct 15
Avg. time 7.5
Std. dev. 3.8
Incorrect 0
Avg. time
No answer 0
Avg. time
Sample size 15

 Filled circle not at Filled circle at
 endpoint endpoint

BP #95
Performance: Human Phaeaco
Correct 30
Avg. time 8.4
Std. dev. 5.1
Incorrect 0
Avg. time
No answer 1
Avg. time 17.0
Sample size 31

 Texture made of vertical Texture made of
 lines horizontal lines

Appendix A: Bongard Problems 385

BP #96
Performance: Human Phaeaco
Correct 25
Avg. time 16.9
Std. dev. 13.3
Incorrect 0
Avg. time
No answer 5
Avg. time 16.0
Sample size 30

 Triangle Quadrilateral

BP #97
Performance: Human Phaeaco
Correct 29
Avg. time 8.7
Std. dev. 5.6
Incorrect 0
Avg. time
No answer 2
Avg. time 18.0
Sample size 31

 Triangle Circle

BP #98
Performance: Human Phaeaco
Correct 9
Avg. time 12.1
Std. dev. 8.7
Incorrect 3
Avg. time 13.7
No answer 4
Avg. time 19.3
Sample size 16

 Triangle Quadrilateral

 Appendix A: Bongard Problems 386

BP #99
Performance: Human Phaeaco
Correct 9
Avg. time 19.8
Std. dev. 9.5
Incorrect 1
Avg. time 19.0
No answer 6
Avg. time 8.3
Sample size 16

 Curves made of circles
 and triangles intersect

BP #100
Performance: Human Phaeaco
Correct 14
Avg. time 5.4
Std. dev. 3.3
Incorrect 0
Avg. time
No answer 0
Avg. time
Sample size 14

 Letter “A” Letter “Б”

BP #101
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Parallel dents Perpendicular dents

Appendix A: Bongard Problems 387

BP #102

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

Internal arrows point Internal arrows point
outward inward

BP #103
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Isosceles triangle Scalene triangle

BP #104
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 One circle passes through the
 center of the other circle

 Appendix A: Bongard Problems 388

BP #105

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Ends of line point to same Ends of line point to
 direction opposite directions

BP #106
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Negative slope Positive slope

BP #107
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

Three simple lines Three non-simple lines

Appendix A: Bongard Problems 389

BP #108

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Petals taper off Petals thicken

BP #109
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

Circle on the right of the Circle on the left of the
box box

BP #110
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Four circles

 Appendix A: Bongard Problems 390

BP #111

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Middle shape is triangle

BP #112
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

Dots equidistant along Dots equidistant along
x-axis y-axis

BP #113
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 T-like point Y-like point

Appendix A: Bongard Problems 391

BP #114

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Four X-points Two X-points

BP #115
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect

No answer
Avg. time
Sample size

 Most deeply nested shape
 is reachable from outside

BP #116
Human Phaeaco Performance:

Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Polygon stands on Polygon stands on
 side vertex

Avg. time

 Appendix A: Bongard Problems 392

BP #117

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Triangle points to center
 of circle

BP #118
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 No cycle There is a cycle

BP #119
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Almost a circle

Appendix A: Bongard Problems 393

BP #120

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.

Avg. time
No answer
Avg. time
Sample size

 All turns are in one direction

BP #121
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Circle: VV; square: VΛ; Circle: ΛΛ; square: ΛV;
 triangle: ΛΛ; blank: ΛV triangle: VV; blank: VΛ

BP #122
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Line joins two different
 points of closed region

Incorrect

 Appendix A: Bongard Problems 394

BP #123

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Similar shapes Dissimilar shapes

BP #124
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Similar textures Dissimilar textures

BP #125
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.

Avg. time
No answer
Avg. time
Sample size

 One protrusion and one
 indentation of the same shape

Incorrect

Appendix A: Bongard Problems 395

BP #126

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 One large and one small
 object

BP #127
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer

Sample size

 Exactly one circle

BP #128
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Same objects inside and
 outside larger shape

Avg. time

 Appendix A: Bongard Problems 396

BP #129

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Indentation on Indentation on
 protrusion indentation

BP #130
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

Larger closed region is Larger closed region is
made of curves made of line segments

BP #131
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Dots make up parallelogram

Appendix A: Bongard Problems 397

BP #132

Performance: Human Phaeaco
Correct

Avg. time
No answer
Avg. time
Sample size

Dots make triangle with Dots make triangle
base down with vertex down

BP #133
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.

Avg. time
No answer

Sample size

 Dots collinear with center
 of circle

BP #134
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Circle centers collinear

Avg. time
Std. dev.
Incorrect

Incorrect

Avg. time

 Appendix A: Bongard Problems 398

BP #135

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Circles on same side of Circles on different
 curve sides of curve

BP #136
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Concave shape Convex shape

BP #137
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Dots equal to the sides that
 make up the closed region

Appendix A: Bongard Problems 399

BP #138

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 No dot in convex hull At least one dot in
 convex hull

BP #139
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time

 Similar components that
 change regularly

BP #140
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 One large shape and two
 smaller identical ones

Sample size

 Appendix A: Bongard Problems 400

BP #141

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Two groups of three
 and two

BP #142
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Three and two, the two
 are always together

BP #143
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.

Avg. time
No answer
Avg. time
Sample size

 Three and two Four and one

Incorrect

Appendix A: Bongard Problems 401

BP #144

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Three and two, but Three and two,
 sharing a property but separable

BP #145
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Four and one, the four Four and one, the four
 make a regular group are three and one

BP #146
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 A square enclosed in A square enclosed in
 a circle, and triangles a triangle, and circles

 Appendix A: Bongard Problems 402

BP #147

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Three and two, the two Three and two, the two
 are vertical are horizontal

BP #148
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 A little less than a A little more than a
 regular shape regular shape

BP #149
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Lone square Lone circle

Appendix A: Bongard Problems 403

BP #150

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Odd num. of squares Even num. of squares

BP #151
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 If the circle closest to the cross is removed,
 the other three form an equilateral triangle

BP #152
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Not vertically symmetric Vertically symmetric

 Appendix A: Bongard Problems 404

BP #153

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Hook-like ending Square-bracket-like
 ending

BP #154
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Wedged ending Round ending

BP #155
Performance: Human Phaeaco

Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Curvaceous Angular

Correct

Appendix A: Bongard Problems 405

BP #156

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Three groups Two groups

BP #157
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 White background Black background

BP #158
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Some slope Another slope

 Appendix A: Bongard Problems 406

BP #159

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Rectangle Triangle

BP #160
Performance: Human Phaeaco
Correct 26
Avg. time 23.2
Std. dev. 23.9
Incorrect 1
Avg. time 65.0
No answer 1
Avg. time 122.0
Sample size 28

 Rectangle which is Typical rectangle
 nearly a triangle

BP #161
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Midpoints are collinear

Appendix A: Bongard Problems 407

BP #162

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Every other side passes
 through the same point

BP #163
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Line connecting small objects
 does not intersect larger object

BP #164
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Number of objects is one Number of objects is
 less than sides one more than sides

 Appendix A: Bongard Problems 408

BP #165

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Line perpendicular to one Line parallel to one
 side of the object side of the object

BP #166
Performance: Human Phaeaco
Correct 24
Avg. time 13.8
Std. dev. 6.5
Incorrect 1
Avg. time 22.0
No answer 2
Avg. time 39.0
Sample size 27

 Two groups of dots Three groups of dots

BP #167
Performance: Human Phaeaco
Correct 6
Avg. time 32.3
Std. dev. 11.4
Incorrect 4
Avg. time 77.5
No answer 16
Avg. time 40.1
Sample size 26

 Groups of two groups Groups of three groups
 of dots of dots

Appendix A: Bongard Problems 409

BP #168

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Bulky interior, if closed Narrow interior, if
 closed

BP #169
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Odd Even

BP #170
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Π-like Χ-like

 Appendix A: Bongard Problems 410

BP #171

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Angle bisectors meet at Perpendicular bisectors
 the incenter meet at the orthocenter

BP #172
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Radially symmetric

BP #173
Performance: Human Phaeaco
Correct 26
Avg. time 23.7

Incorrect 0
Avg. time
No answer 1

16.0
Sample size 27

 Small variance of slopes Large variance of
 slopes

Std. dev. 17.7

Avg. time

Appendix A: Bongard Problems 411

BP #174

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Convex central interior Concave central
 interior

BP #175
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Small object can glide
 in the bay

BP #176
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Short line connecting dots Long line connecting
 avoiding obstacles dots avoiding obstacles

 Appendix A: Bongard Problems 412

BP #177

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer

Sample size

 All interiors are convex

BP #178
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Center of circle in triangle
 perpendicular to the other two

BP #179
Performance: Human Phaeaco

Avg. time
Std. dev.

Avg. time

Avg. time
Sample size

 Thinner at top Thicker at top

Avg. time

Correct

Incorrect

No answer

Appendix A: Bongard Problems 413

BP #180

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Black region widens Black region narrows
 toward the center toward the center

BP #181
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time

Avg. time
Sample size

 One concavity Two concavities

BP #182
Performance: Human Phaeaco
Correct
Avg. time

Incorrect

Avg. time
Sample size

 Concave if proximal Convex if proximal
 points are connected points are connected

No answer

Std. dev.

Avg. time
No answer

 Appendix A: Bongard Problems 414

BP #183

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Same curvature close Change of curvature
 to the middle close to the middle

BP #184
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Zigzag part close to the
 middle

BP #185
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Two complex parts Three complex parts

Appendix A: Bongard Problems 415

BP #186

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time

Sample size

 Object made of objects Object made of objects
 made of objects

BP #187
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Sides of parts one more Sides of parts one less
 than sides of whole than sides of whole

BP #188
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Shape of whole different Shape of whole same
 from shape of parts as shape of parts

No answer
Avg. time

 Appendix A: Bongard Problems 416

BP #189

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time

Sample size

 All groups are made of
 parts of the same texture

BP #190
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time

Avg. time
Sample size

 All connected pieces Some connected pieces
 have the same texture have different textures

BP #191
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Orifice on the left Orifice on the right

No answer
Avg. time

No answer

Appendix A: Bongard Problems 417

BP #192

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Elongated vertically Elongated horizontally

BP #193
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Triangle Rectangle

BP #194
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Quadrilateral background Triangular background

 Appendix A: Bongard Problems 418

BP #195

Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Bottom object in front Bottom object behind
 of top objects in 3-D top objects in 3-D

BP #196
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Light-colored texture Dark-colored texture

BP #197
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Some style (font) Another style (font)

Appendix A: Bongard Problems 419

BP #198

Performance: Human Phaeaco
Correct
Avg. time

Avg. time

BP #200
Performance: Human Phaeaco
Correct
Avg. time
Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Solution of BP is based Solution of BP is based
 on featural difference on numerosity

Std. dev.
Incorrect
Avg. time
No answer
Avg. time
Sample size

 Stays in Escapes

BP #199
Performance: Human Phaeaco
Correct

Incorrect
Avg. time
No answer
Avg. time
Sample size

 Stays put Tumbles

Std. dev.

 Appendix A: Bongard Problems 420

Appendix B: Curve Approximation
1. Parametric cubic b-splines

Given are n + 1 points, P0, P1, …, Pn, on the 2-D Euclidean plane. The task is to

find n 3rd-degree (cubic) polynomials S0, S1, …, Sn-1, such that each Si passes

through points Pi and Pi+1, and the overall curve formed by the cubic polynomials

is smooth (Figure B.1). This last condition implies that the first and second

derivatives of polynomials Si-1 and Si at point Pi are equal.

 P0

P1 P2

Pn-1

Pn

S0
S1 Sn-1

Figure B.1: n +1 points approximated by a piecewise smooth curve

The polynomials Si , i = 0,…,n-1, will be expressed in parametric equations:

Si (t) = [ai (t), bi (t)], 0 ≤ t ≤ 1, where

[ai (0), bi (0)] = Pi, and

[ai (1), bi (1)] = Pi +1.

Denote polynomial ai (t) by , and, similarly,

polynomial b

iiii atatata ,0,1
2

,2
3

,3 +++

ibt ,0+i (t) by b . Thus, the derivatives of Siii btbt ,1
2

,2
3

,3 ++ i are:

]23,23[)(,1,2
2

,3,1,2
2

,3 iiiiiii btbtbatatatS ++++=′ , and

]3,3[)(,2,3,2,3 iiiii btbatatS ++=′′

(Note: The terms in the second derivative were simplified, divided by 2.) In

what follows, only the derivation of ai (t) = is shown,

since the derivation of b

iiii atatata ,0,1
2

,2
3

,3 +++

i (t) is exactly symmetrical (i.e., replace a by b).

 421

 Appendix B: Curve Approximation 422

The requirements for piecewise smooth curves translate into the following:

Si (1) = Si +1 (0) = Pi +1, (1)

)0()]0(),0([)]1(),1([)1(111 +++ ′=′′=′′=′ iiiiii SbabaS , (2) and

)0()]0(),0([)]1(),1([)1(111 +++ ′′=′′′′=′′′′=′′ iiiiii SbabaS (3).

From (1) we have: Si (0) = Pi , hence: a0,i = xi (4) (where xi is the x-coordinate

of point Pi), and also: Si (1) = Pi+1 , hence: 1,0,1,2,3 +=+++ iiiii xaaaa (5).

From (2) we have: 3 1,1,1,2,3 2 +=++ iiii aaaa (6).

From (3) we have:
3

,21,2
,31,2,2,3

ii
iiii

aa
aaaa3

−
=⇒=+ +

+ (7).

From (7) and (6) we obtain: 1,11,2,2,1 −− ++= iiii aaaa (8).

From (7) and (5) we obtain:

1,0,1,2
,21,2

3 +
+ =+++

−
iiii

ii xaaa
aa

, and using (4) the last equation becomes:

()iiiiii xxaaaa −=++− ++ 1,1,2,21,2 333 , from which the following two

equations are obtained:

()1,2,21,1 2
3
1

++ +−−= iiiii aaxxa (9a), and

()iiiii aaxxa ,21,211,1 2
3
1

+−−= −−− (9b).

From (8), (9a), and (9b), we obtain:

() () ⇒+−−=+−−++ ++−−− 1,2,21,21,211,2,2 2
3
12

3
1

iiiiiiiiii aaxxaaxxaa

() ⇒−−−=++ −++− 111,2,21,2 3
1

3
4

3
1

iiiiiii xxxxaaa

111,2,21,2 3634 +−+− +−=++ iiiiii xxxaaa (10).

Appendix B: Curve Approximation 423

Equation (10) holds for i = 1, …, n –1, i.e., it yields n –1 equations. To obtain

two more equations (because there are n +1 unknowns), we can impose the

following two boundary conditions:

00)0(0,20 =⇒=′′ aS (11), and

030)1(1,21,31 =+⇒=′′ −−− nnn aaS , whence using (7) we have:

000
3

3 ,21,21,2,21,2
1,2,2 =⇒=+−⇒=+

−
−−−

−
nnnnn

nn aaaaa
aa

 (12).

Thus, equations (10), (11), and (12) result in a system of n +1 equations in

n +1 unknowns (or rather, (n – 1) × (n – 1), since a2,0 = a2,n = 0, hence the first and

last rows and the first and last columns of the system are zero):

0
363

363

363
363

0

4

4

4
4

12

11

321

210

,2

,21,22,2

1,2,21,2

3,22,21,2

2,21,20,2

0,2

nnn

iii

n

nnn

iii

xxx

xxx

xxx
xxx

a
aaa

aaa

aaa
aaa

a

+−

+−

+−
+−

−−

+−

−−

+−

L

L

LLL

LLL

The above is a tridiagonal system, and can be solved by using Gaussian

elimination adapted for such systems (e.g., Press, Flannery et al., 1986, p. 40).

Once the a2,i’s are obtained by solving the above, the a1,i’s are computed from

equation (9a), whereas the a3,i’s are computed from equation (7). Finally, the a0,i’s

are already known from (4). The coefficients of the polynomial bi (t) are computed

in an exactly analogous way, using the y-coordinates of the points Pi.

 Appendix B: Curve Approximation 424

2. Ellipse and circle detection

Given are n points, P1, …, Pn, n ≥ 6, on the 2-D Euclidean plane. The task is to

determine whether the points lie approximately on an elliptical arc in general, or

circular arc in particular, and to estimate the coefficients of the equation of the

curve. The general equation of a conic section on the plane is given below:

01222 22 =+++++ fydxcybxyax (13)

If a c > 0, then the conic section is an ellipse or circle. (If a c < 0, then it is a

hyperbola or pair of intersecting straight lines, and if a c = 0 then it is a parabola).

Clearly, five points suffice to estimate coefficients a, b, c, d, and f in (13), since

they yield a linear system of five equations in five unknowns, which generally has

a unique solution. However, any five points (barring collinearities) can satisfy

(13). Thus, six or more points are required to guarantee that after solving the

resulting n × 5 linear system, n ≥ 6, (13) describes a conic section.

After estimating a, b, c, d, and f, the points P1, …, Pn can be plugged back into

(13), to determine how well they satisfy the equation. Specifically:

gfydxcybxyax =++++ 222 22 (14)

In (14), each Pi, i = 1, …, n, yields a value for g that must be approximately

equal to –1. By collecting a sample of gi, i = 1, …, n, we can determine whether

the points lie on a conic section by examining the mean value ˜ of the sample,

which must be near –1, and its standard deviation s, which must be near 0. In

practice, it suffices that |˜ – (–1)| < 0.05, and s < 0.01.

Assuming a c > 0, we have an ellipse or circle. The following computations

result in an estimate of several parameters of the ellipse.

b
ack

2
−

= ,
21 k

k
+

=l ,
2

1 l+
=θsin ,

2
1cos l−

=θ (15)

Appendix B: Curve Approximation 425

In equations (15), θ is the angle by which the ellipse must be turned in order

to be either horizontally or vertically oriented. The resulting rotated ellipse has the

following coefficients:

θθθθ 22 sinsincos2cos cbaa +−=′ (16)

() () θθθθ cossinsincos 22 cabb −+−=′ (17)

θθθθ 22 coscossin2sin cbac ++=′ (18)

θθ sincos fdd −=′

θθ sincos dff −=′

The value of b´ in (17) bust be approximately equal to zero, since the axes of

the rotated ellipse are parallel to the x and y axes. Equation (19), below, yields an

estimate of the eccentricity E of the ellipse:

if ca ′>′ then
a
cE

′
′

−= 1 , else
c
aE

′
′

−= 1 (19)

Ideally, the value of E in (19) is zero if the points form a circle. But in practice

the points are computed approximately only (in Phaeaco they are integers), so any

value of E below around 0.45 suggests a circle. The larger the circle, the more this

threshold can be “trusted” (i.e., the lower its value can be). Circles that nearly fill

Phaeaco’s visual box (100 × 100) yield an eccentricity of around 0.20.

3. Computation of parameters of a circle

Given are n points, P1, …, Pn, n ≥ 6, on the 2-D Euclidean plane that are

suspected to lie on a circle. To compute the center of the circle, sample triplets of

points taken from among the n points can be examined, and the

circumcenter of the triangle formed by each triplet can be computed. If

the n points lie on a circle, the circumcenters must approximately coincide.

],,[
321 iii PPP

,(
xi

C)
yi

C

 Appendix B: Curve Approximation 426

Therefore, a method for testing how well the given points form a circle is to

examine the standard deviation of each of the samples of x- and y-coordinates of

the circumcenters, and demand that it is a small number, close to zero. The

circumcenter of a triangle P1P2P3 where P1= (x1, y1), P2= (x2, y2), and P3= (x3, y3),

is given by the formulas:

()() ()()

−
−

−
−
−

−
+−

−
−

+−
+−

=

12

12

13

13

12

1212

13

1313
23

2
yy
xx

yy
xx

yy
xxxx

yy
xxxx

yy
Cx

()()
()13

131313

13

13

22 yy
xxxxyy

yy
xx

CC xy −
+−

+
+

+
−
−

−=

The above formulas are valid provided that y1 ≠ y2 and y1 ≠ y3. But note that

since the three points form a triangle, hence are not collinear, at least one of y1 ≠

y2 or y1 ≠ y3 must be true. If any (but not both) of y1 = y2 and y1 = y3 is true, then

renaming the points appropriately makes the above formulas usable.

Having computed the center of the circle, the radius is found as the Euclidean

distance between the center and any of the n points. Taking the average of all n

distances yields a better estimate of the radius.

Appendix C: Origin of Phaeaco’s name
There are several reasons — all listed below — for which I chose the name

“Phaeaco” (/fi·'å·ko/) for the system described in this thesis.

1. It is a proper name
There is a passage in Homer’s Odyssey that I find extremely interesting from a

modern, cognitive-science perspective. In Books Eta and Theta, the Phaeacians

are described: a peace-loving and sea-faring people, who probably lived on an

island that in our times is called Corfu (just off the northwestern coast of Greece;

its shape has an irregular elongatedness). The Phaeacians are the first to welcome

in their land the hero, Odysseus (in Latin: Ulysses), who has suffered a long and

arduous journey over the seas. The Phaeacian king Alcinous orders his people to

construct a ship for Odysseus to help him travel to his final destination, the island

of Ithaca, where his home is. Alcinous, while describing to Odysseus the virtues

of the Phaeacian ships, says the following (translation by the author, with some

vital help from Douglas Hofstadter and Kellie Gutman):

“Your country, tell me what it’s called, your people and your city;

then let our ships design their course, and bring you safely homeward.

Phaeacian ships do not have men to steer them on their courses;

they lack the rudders you may see in ships of other nations;

but on their own they guess the thoughts and wishes of their makers;

they know all countries of the world, their cities, and their meadows;

they travel swiftly like the wind that blows o’er seas and oceans,

avoiding storms and cloudy skies, so they are not in danger

of sailing off their course to founder, sink, and slowly vanish.”

 427

 Appendix C: Origin of Phaeaco’s Name 428

Who said Artificial Intelligence is a modern concept? Nearly 3,000 years ago

it seems Homer had some grasp of it. I found this image very interesting: a

program-ship that on its own may guess the thoughts and wishes of its maker, and

sail through misty cognitive spaces to find, unharmed, its target.

The above excerpt is from Book Theta, two paragraphs before the end.

Earlier, in Book Eta, goddess Athena (in Latin: Minerva), in disguise, tells

Odysseus the following about the Phaeacians:

“They’re sailors, that is what they are, whose ships, by Neptune’s graces,

glide o’er the seas like birds, or like perceptions through your spirit.”

It appears Homer had some cognitive project in his mind! Now, if only he had

given the Phaeacian ship a name! Well, unfortunately, he did not. So I decided to

give it a name myself. I thought the name should reflect the ship’s origin, and

should be of feminine gender (as all ancient names of ships were), rhyming with

another important ancient ship’s name.

2. It rhymes (in Greek) with Argo
Argo was the name of the ship of another (non-Homeric) hero: Jason, who sailed

the seas to find the golden fleece, helped by his comrades, the Argonauts. Since I

am one of the “Fargonauts” (from FARG, our research group), I thought that’s

cute, too. Here are the names of the two ships, in the original language:

Αργώ – Φαιακώ

3. It is an acronym in English
Once, my research advisor remarked, “I find most of today’s acronyms very

contrived.” I kept trying to find an acronym for my project for months, but could

Appendix C: Origin of Phaeaco’s Name 429

not come up with one that would both satisfy my advisor and conform to the spirit

of our research group’s prior names for projects. So I gave up and decided instead

that I would devise an acronym that would be obviously too contrived. Eventually

I succeeded, coming up with the following monstrosity:

P = Pattern-recognizing (an allusion to the title of M. M. Bongard’s book)

H = Hofstadter-inspired (a tribute to my advisor)

A = Architecture (that’s what Phaeaco is)

E = Empirically (its justification comes from empirical observations)

A = Approaching (it is just an approximation; I hope it will keep approaching...)

C = Cognitive

O = Organization

Is this sufficiently contrived? But wait... there is more!

4. It is an acronym in Greek, too!
Here it is: ΦΑΙΑΚΩ, in ancient (Attic) Greek, makes up the following acronym:

Φ = Öïõíôáëyò

Α = Pðïðëå™óáò

 Ι = EÉèÜêçæåí

Α = Pëêßíïïí

Κ = êÜñáí

Ω = ©ìïßùóåí

Now, what does all that mean? I leave this as an exercise for the reader.

Suffice it to say that the words are not random, they are meaningful, make up a

sentence in ancient Greek, and relate both to this project and to the Odyssey.

 Appendix C: Origin of Phaeaco’s Name 430

REFERENCES

Antell, Sue Ellen and Daniel P. Keating (1983). “Perception of numerical

invariance in neonates”. Child Development, no. 54, pp. 695-701.
Aristotle (1992). Categories. On Interpretation. Prior Analytics: Loeb Classical

Library. Harvard.
Arms, Karen and Pamela S. Camp (1988). Biology: A Journey into Life: Saunders

College Publishing.
Armstrong, S. L., Lila R. Gleitman, et al. (1983). “What some concepts might not

be”. Cognition, no. 13, pp. 263-308.
Ball, G. H. and D. J. Hall (1965). ISODATA, a novel method of data analysis and

classification: Technical Report. Stanford, CA, Stanford University.
Barsalou, Lawrence W. (1983). “Ad hoc categories”. Memory & Cognition, vol.

11, pp. 211-227.
Barsalou, Lawrence W. (1987). “The instability of graded structure: Implications

for the nature of concepts”. In U. Neisser (ed.), Concepts and Conceptual
Development: Ecological and Intellectual Factors in Categorization.
Cambridge: Cambridge University Press.

Berwick, Robert C. (1986). “Learning from positive-only examples”. In Ryszard
S. Michalski, Jaime G. Carbonell and Tom M. Mitchell (ed.), Machine
Learning, vol. II. Los Altos, California: Morgan Kaufmann.

Bongard, Mikhail M. (1970). Pattern Recognition. New York: Spartan Books.
Brown, R. and C. Hanlon (1970). “Derivational Complexity and the Order of

Acquisition in Child Speech”. In J. R. Hayes (ed.), Cognition and the
Development of Language. New Yowk: Wiley.

Buckley, Paul B. and C. B. Gillman (1974). “Comparisons of digits and dot
patterns”. Journal of Experimental Psychology, vol. 103, no. 6, pp. 1131-
1136.

Chalmers, David (1996). The Conscious Mind. Oxford: Oxford University Press.
Crick, Francis (1994). The Astonishing Hypothesis: The Scientific Search for the

Soul. New York: Simon & Schuster.
Dawkins, Richard (1996). The Blind Watchmaker. New York: Norton.
Dehaene, Stanislas (1997). The Number Sense. New York: Oxford University

Press.
Dehaene, Stanislas, Ghislaine Dehaene-Lambertz, et al. (1998). “Abstract

representations of numbers in the animal and human brain”. Trends in
Neuroscience, vol. 21, pp. 355-361.

 431

 REFERENCES 432

Dehaene, Stanislas, Véronique Izard, et al. (2006). “Core Knowledge of
Geometry in an Amazonian Indigene Group”. Science, vol. 311, no. 20
January 2006, pp. 381-384.

Dennett, Daniel C. (1991). Consciousness Explained. Boston: Little, Brown and
Company.

Diogenes, Laertius (1992). Lives of Eminent Philosophers, I, Books 1-5: Loeb
Classical Library. Harvard.

Dreyfus, Hubert L. (1972). What Computers Can't Do. New York: Harper and
Row.

Dreyfus, Hubert L. (1992). What Computers Still Can't Do: A Critique of
Artificial Reason. Cambridge, Massachusetts: MIT Press.

Evans, Thomas G. (1968). “A program for the solution of a class of geometric-
analogy intelligence-test questions”. In M. Minsky (ed.), Semantic
Information Processing, pp. 271-353. Cambridge, MA: MIT Press.

Fechner, G. T. (1860). Elemente der Psychophysik. Leipzig: Breitkopf & Härtel.
Foundalis, Harry E. (1999). “44 New Bongard Problems”:

http://www.cs.indiana.edu/~hfoundal/res/bps/bpidx.htm
Foundalis, Harry E. (2001). “Phaeaco, and the Bongard Problems”:

http://www.cs.indiana.edu/~hfoundal/research.html
Frede, Michael (1981). “Categories in Aristotle”. In M. Frede (ed.), Essays in

Ancient Philosophy, pp. 29-48: University of Minnesota Press, 1987.
Gentner, Dedre (1983). “Structure-mapping: a theoretical framework”. Cognitive

Science, vol. 7, pp. 155-170.
Goldstone, R. L. (1993). “Feature Distribution and Biased Estimation of Visual

Displays”. Journal of Experimental Psychology: Human Perception and
Performance, vol. 19, no. 3, pp. 564-579.

Goldstone, R. L. and A. Kersten (2003). “Concepts and Categorization”. In A. F.
Healy and R. W. Proctor (ed.), Comprehensive Handbook of Psychology,
vol. 4: Experimental psychology pp. 599-621. New Jersey: John Wiley
and Sons, Inc.

Hampton, James A. (1979). “Polymorphous concepts in semantic memory”.
Journal of Verbal Learning and Verbal Behavior, no. 18, pp. 441-461.

Hampton, James A. (1982). “A demonstration of intransitivity in natural
categories”. Cognition, no. 12, pp. 151-164.

Hartigan, J. A. (1975). Clustering Algorithms. New York, NY: John Wiley and
Sons, Inc.

Hofstadter, Douglas, R. (1977). “56 New Bongard Problems”:
http://www.cs.indiana.edu/~hfoundal/res/bps/bpidx.htm

REFERENCES 433

Hofstadter, Douglas, R. (1979). Gödel, Escher, Bach: an Eternal Golden Braid.
New York: Basic Books.

Hofstadter, Douglas R. (1985). Metamagical Themas: Questing for the Essence of
Mind and Pattern. New York: Basic Books.

Hofstadter, Douglas, R. (1995a). Fluid Concepts and Creative Analogies:
Computer Models of the Fundamental Mechanisms of Thought. New
York: Basic Books.

Hofstadter, Douglas R. (1995b). “A Review of Mental Leaps: Analogy in
Creative Thought”. AI Magazine, Fall 1995.

Hofstadter, Douglas R. (2001). “Epilogue: Analogy as the Core of Cognition”. In
Dedre Gentner, Keith J. Holyoak and Boicho N. Kokinov (ed.), The
Analogical Mind: Perspectives from Cognitive Science. Cambridge, MA:
MIT Press/Bradford Book.

Hofstadter, Douglas R. and Daniel C. Dennett (1981). The Mind's Eye: Fantasies
and Reflections on Self and Soul. New York: Basic Books.

Holyoak, Keith J. and Paul Thagard (1995). Mental Leaps. Cambridge,
Massachusetts; London, England: The MIT Press; a Bradford Book.

Hsu, Feng-Hsiung (2002). Behind Deep Blue: Building the Computer that
Defeated the World Chess Champion. Princeton, New Jersey: Princeton
University Press.

Huffman, David A. (1971). “Impossible objects as nonsense sentences”. In B.
Meltzer and D. Michie (ed.), Machine Intelligence 6, pp. 295-324.
Edinburgh, Scotland: Edinburgh University Press.

Jackson, Frank (1982). “Epiphenomenal Qualia”. Philosophical Quarterly, vol.
32, pp. 127-136.

Jain, A. K., M. N. Murty, et al. (1999). “Data Clustering: a Review”. ACM
Computing Surveys, vol. 31, no. 3.

Johnson, Mark (1987). The Body in the Mind: the Bodily Basis of Meaning,
Imagination, and Reason. Chicago: University of Chicago.

Kimberling, Clark (1998). Triangle Centers and Central Triangles. Winnipeg,
Canada: Utilitas Mathematica Publishing Incorporated.

Kruschke, John K. (1992). “ALCOVE: An exemplar-based connectionist model
of category learning”. Psychological Review, no. 99, pp. 22-44.

Lakoff, George and Mark Johnson (1980). Metaphors we Live by. Chicago:
University of Chicago.

Lakoff, George and Rafael E. Núñez (2000). Where Mathematics Comes from:
How the Embodied Mind Brings Mathematics into Being. New York:
Basic Books.

 REFERENCES 434

Lamberts, K. (1995). “Categorization under time pressure”. Journal of
Experimental Psychology: General, no. 124, pp. 161-180.

Linhares, Alexandre (2000). “A glimpse at the metaphysics of Bongard
problems”. Artificial Intelligence, vol. 121, no. 1–2, pp. 251–270.

Linhares, Alexandre (2005). “An active symbols theory of chess intuition”. Minds
and machines, vol. 15, pp. 131-181.

Lu, S. Y. and K. S. Fu (1978). “A sentence-to-sentence clustering procedure for
pattern analysis”. IEEE Transactions, Syst. Man Cybern., no. 8, pp. 381-
389.

Luria, Aleksandr, R. (1968). The Mind of a Mnemonist: a Little Book about a Vast
Memory. (Translated from the Russian by Lynn Solotaroff.) Cambridge,
Massachusetts: Harvard University Press.

Luria, Aleksandr, R. (1976). Cognitive Development: Its Cultural and Social
Foundations. Cambridge, Massachusetts: Harvard University Press.

Maksimov, V. V. (1975). “Sistema, obuchayushtchayasya klassifikatsii
geometricheskikh izobrazhenyi (A system for teaching the classification of
geometric patterns)”. In M. S. Smirnov and V. V. Maksimov (ed.),
Modyelirovaniye Obucheniya i Povyedyeniya (Modeling of Learning and
Behavior, in Russian), pp. 29-120. Moscow: Nauka.

Markman, Arthur B. (1999). Knowledge Representation. Mahwah, NJ: Erlbaum.
Marshall, James B. (1999). “Metacat: A Self-Watching Cognitive Architecture for

Analogy-Making and High-Level Perception”. Computer Science and
Cognitive Science, Indiana University.

McCloskey, M. E. and S. Glucksberg (1978). “Natural categories: Well defined or
fuzzy sets?”. Memory & Cognition, vol. 6, pp. 462-472.

McQueen, J. (1967). “Some methods for classification and analysis of
multivariate observations”. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, pp. 281-297.

Mechner, Francis (1958). “Probability relations within response sequences under
ratio reinforcement”. Journal of the Experimental Analysis of Behavior,
no. 1, pp. 109-121.

Medin, D. L. and M. M. Schaffer (1978). “Context theory of classification
learning”. Psychological Review, no. 85, pp. 207-238.

Mehler, Jacques and Tom G. Bever (1967). “Cognitive capacity of very young
children”. Science, no. 158, pp. 141-142.

Miller, G. A. and P. N. Johnson-Laird (1976). Language and Perception.
Cambridge, MA: Harvard University Press.

REFERENCES 435

Mitchell, Melanie (1990). “Copycat: a computer model of high-level perception
and conceptual slippage in analogy-making”. Computer and
Communication Sciences, University of Michigan.

Mitchell, Melanie (1993). Analogy-Making as Perception: MIT Press.
Mitchell, Tom M. (1978). Version Spaces: An Approach to Concept Learning.

Computer Science Report CS-78-711, Stanford University.
Mitchell, Tom M. (1997). Machine Learning. New York: McGraw-Hill.
Moyer, Robert S. and Richard H. Bayer (1976). “Mental Comparison and the

Symbolic Distance Effect”. Cognitive Psychology, vol. 8, pp. 228-246.
Moyer, Robert S. and Thomas K. Landauer (1967). “Time required for

Judgements of Numerical Inequality”. Nature, vol. 215, pp. 1519-1520.
Moyer, Robert S. and Thomas K. Landauer (1973). “Determinants of reaction

time for digit inequality judgments”. Bulletin of Psychological Society,
vol. 1, no. 3, pp. 167-168.

Murphy, Gregory, L. (2002). The Big Book of Concepts. Cambridge, MA: MIT
Press.

Murphy, Gregory, L. and H. H. Brownell (1985). “Category differentiation in
object recognition: Typicality constraints on the basic category
advantage”. Journal of Experimental Psychology: Learning, Memory, and
Cognition, no. 11, pp. 70-84.

Murphy, Gregory, L. and D. L. Medin (1985). “The role of theories in conceptual
coherence”. Psychological Review, no. 92, pp. 289-316.

Nosofsky, Robert M. (1984). “Choice, similarity, and the context theory of
classification”. Journal of Experimental Psychology: Learning, Memory,
and Cognition, no. 10, pp. 104-114.

Nosofsky, Robert M. (1992). “Exemplars, prototypes, and similarity rules”. In A.
Healy, S. Kosslyn and R. Shiffrin (ed.), From Learning Theory to
Connectionist Theory: Essays in Honor of W. K. Estes, vol. 1 pp. 149-168.
Hillsdale, NJ: Erlbaum.

Nosofsky, Robert M. and T. J. Palmeri (1997). “An exemplar-based random walk
model of speeded categorization”. Psychological Review, no. 104, pp.
266-300.

Papadimitriou, Christos H. (1994). Computational Complexity. Reading,
Massachusetts: Addison-Wesley.

Parkman, John M. (1971). “Temporal aspects of digit and letter inequality
judgments”. Journal of Experimental Psychology, vol. 91, no. 2, pp. 191-
205.

Piaget, Jean (1952). The Child's Conception of Number. New York: Norton.

 REFERENCES 436

Piaget, Jean (1954). The Construction of Reality in the Child. New York: Basic
Books.

Pinker, Steven (1997). How the Mind Works. New York: W. W. Norton &
Company.

Plato (1992). Thaeetetus. Sophist: Loeb Classical Library. Harvard.
Platt, John R. and David M. Johnson (1971). “Localization of position within a

homogeneous behavior chain: Effects of error contingencies”. Learning
and Motivation, no. 2, pp. 386-414.

Posner, Michael I. and Marcus E. Raichle (1994). Images of Mind. New York:
Scientific American Library.

Press, William H., Brian P. Flannery, et al. (1986). Numerical Recipes: The Art of
Scientific Computing. New York: Cambridge University Press.

Rehling, John A. (2001). “Letter Spirit (Part Two): Modeling Creativity in a
Visual Domain”. Dissertation Thesis, Computer Science and Cognitive
Science, Indiana University.

Rips, Lance J., E. J. Shoben, et al. (1973). “Semantic distance and the verification
of semantic relations”. Journal of Verbal Learning and Verbal Behavior,
no. 12, pp. 1-20.

Rosch, Eleanor (1973). “On the internal structure of perceptual and semantic
categories”. In T.E. Moore (ed.), Cognitive Development and the
Acquisition of Language. New York: Academic Press.

Rosch, Eleanor (1975). “Cognitive representations of semantic categories”.
Journal of Experimental Psychology: General, no. 104, pp. 192-233.

Rosch, Eleanor (1977). “Human categorization”. In N. Warren (ed.), Advances in
Cross-Cultural Psychology, vol. 1 pp. 177-206. London: Academic Press.

Rosch, Eleanor (1978). “Principles of categorization”. In E. Rosch and B.B.
Lloyd (ed.), Cognition and Categorization, pp. 27-48. Hillsdale, NJ:
Elrbaum.

Rosch, Eleanor and C. B. Mervis (1975). “Family resemblance: Studies in the
internal structure of categories”. Cognitive Psychology, no. 7, pp. 573-605.

Rumbaugh, D. M., S. Savage-Rumbaugh, et al. (1987). “Summation in the
chimpanzee (Pan troglodytes)”. Journal of Experimental Psychology:
Animal Behavior Processes, no. 13, pp. 107-115.

Rumelhart, David E., Geoffrey E. Hinton, et al. (1986). “Learning representations
by back-propagating errors”. Nature, no. 323, pp. 533-536.

Rumelhart, David E. and A. Ortony (1977). “The representation of knowledge in
memory”. In R. C. Anderson, R. J. Spiro and W. E. Montague (ed.),
Schooling and the Acquisition of Knowledge. Hillsdale, NJ: Erlbaum.

REFERENCES 437

Saito, Kazumi and Ryohei Nakano (1993). “A Concept Learning Algorithm with
Adaptive Search”. In Proceedings of the Machine Intelligence 14
Workshop, pp. 347–363, Oxford University Press.

Schank, Roger C. (1982). Dynamic Memory: A Theory of Learning in Computers
and People. New York: Cambridge University Press.

Schank, Roger C. and R. P. Abelson (1977). Scripts, plans, goals, and
understanding. Hillsdale, New Jersey: Lawrence Erlbaum Press.

Schank, Roger C. and David B. Leake (1990). “Creativity and Learning in a Case-
Based Explainer”. In Jaime Carbonell (ed.), Machine Learning.
Cambridge, Massachusetts: MIT / Elsevier.

Searle, John R. (1980). “Minds, Brains, and Programs”. Behavioral and Brain
Sciences, vol. 3, no. 3, pp. 417-457.

Shepard, Roger N., Dan W. Kilpatric, et al. (1975). “The Internal Representation
of Numbers”. Cognitive Psychology, vol. 7, pp. 82-138.

Shuford, Emir, H. (1961). “Percentage estimation of proportion as a function of
element type, exposure time, and task”. Journal of Experimental
Psychology, vol. 61, no. 5, pp. 430-436.

Smith, E. E. and D. L. Medin (1981). Categories and Concepts. Cambridge, MA:
Harvard University Press.

Smith, E. E. and D. N. Osherson (1984). “Conceptual combination with prototype
concepts”. Cognitive Science, no. 8, pp. 337-361.

Starkey, Prentice and R. J. Cooper, Jr. (1980). “Perception of numbers by human
infants”. Science, no. 210, pp. 1033-1035.

Strauss, M. S. (1979). “Abstraction of prototypical information by adults and 10-
month-old infants”. Journal of Experimental Psychology: Human
Learning and Memory, no. 5, pp. 618-632.

Thompson, Richard F. (1993). The Brain: A Neuroscience Primer. New York,
NY: W. H. Freeman and Company.

Thurston, L. L. (1927). “Psychophysical analysis”. American Journal of
Psychology, no. 38, pp. 368-389.

Treisman, Anne, M. (1980). “A Feature-Integration Theory of Attention”.
Cognitive Psychology, vol. 12, no. 12, pp. 97-136.

Treisman, Anne, M. (1986). “Features and Objects in Visual Processing”.
Scientific American, Nov 86, pp. 114-125.

Tversky, A. (1977). “Features of similarity”. Psychological Review, no. 84, pp.
327-352.

Tye, Michael (1986). “The Subjective Qualities of Experience”. Mind, no. 95, pp.
1-17.

 REFERENCES 438

van Oeffelen, Michiel P. and Peter G. Vos (1982). “A probabilistic model for the
discrimination of visual number”. Perception & Psychophysics, vol. 32,
no. 2, pp. 163-170.

Waltz, David (1975). “Understanding line drawings of scenes with shadows”. In
P.H. Winston (ed.), The Psychology of Computer Vision. New York:
McGraw-Hill.

Weber, E. H. (1850). “Der Tastsinn und das Gemeingefühl”. In R. Wagner (ed.),
Handwörterbuch der Physiologie, vol. 3, part 2, pp. 481-588.
Braunschweig, Germany: VIeweg.

Welford, A. T. (1960). “The measurement of sensory-motor performance: Survey
and reappraisal of twelve years progress”. Ergonomics, vol. 3, pp. 189-
230.

Wexler, K. and P. Culicover (1980). Formal Principles of Language Acquisition.
Cambridge, Massachusetts: MIT Press.

Winograd, Terry A. (1972). Understanding Natural Language. New York:
Academic Press.

Winston, Patrick, H. (1975). “Learning structural descriptions from examples”. In
P.H. Winston (ed.), The Psychology of Computer Vision. New York:
McGraw-Hill.

Woodruff, Guy and David Premack (1981). “Primative mathematical concepts in
the chimpanzee: Proportionality and numerosity”. Nature, no. 293, pp.
568-570.

Zeki, Semir (1993). “The Visual Image in Mind and Brain”. In W. H. Freeman
(ed.), Mind and Brain. New York: W. H. Freeman and Company.

Curriculum Vitae
Harry E. Foundalis

Place of birth: Edessa, Greece

Date of birth: April 14, 1962

Education
• Ph.D. in computer science & cognitive science, Indiana University, 2006.

• M.Sc. in computer science, University of Alabama at Birmingham, 1987.

• B.S. in mathematics, University of Crete, Herakleion, Crete, Greece, 1985.

Publications
• “Evolution of Gender in Indo-European Languages”. In Proceedings of

the Twenty-fourth Annual Conference of the Cognitive Science Society.

Fairfax, Virginia, August 2002.

• “A Type Scheme for a Theorem-Proving Language”. M.Sc. Thesis,

computer science, University of Alabama at Birmingham, Birmingham,

Alabama, August 1987.

	Prologue with a Book’s Epilogue
	Introduction
	A virtual tour in Bongard’s world
	Solutions with difference in a feature value
	Existence
	Structural and relational differences
	Relation within a single box
	Solutions and aesthetics

	Why Are BP’s Cognitively Interesting?
	Questioning microdomains
	BP’s as indicators of cognition
	Pattern formation and abstraction
	Pattern-matching, recognition, and analogy-making
	Clustering and Categorization
	Memory and learning
	Design and creativity
	Language and communication

	On the futile quest for a precise delineation of
	Beyond Bongard’s world
	Defining the domain

	Universality and Objectivity of BP’s
	Are BP’s cross-cultural?
	Geometry as perceived by peasants and indigenous people

	Objectivity of the difficulty of various BP’s
	An experiment with American college students

	Summary

	Automation of BP-Solving
	RF4 and the problem of input representation
	Maksimov’s combinatorial approach
	How is Phaeaco’s approach different?
	What should be the goal of automation?
	Number of BP’s solved vs. degree of automation
	Agreement with data vs. interest in cognitive science

	Phaeaco in Action
	What Phaeaco can do
	Feature value distinction
	Existence
	Imaginary percepts
	Equality in a single box
	Reading the small print

	Phaeaco’s Mentor
	Summary

	Foundational Concepts
	Theories of concepts
	The classical theory of concepts
	The prototype theory of concepts
	The exemplar theory of concepts
	The Generalized Context Model
	Controversy over the correctness of the two theories

	The FARG principles of conceptual representation
	Copycat and its Slipnet
	The Workspace
	Coderack, codelets, and temperature

	Workspace Representations
	Formation of Workspace representations
	Activation of nodes and monitoring activity
	Numerosity
	Background
	The accumulator metaphor

	Other visual primitives
	Dots, points, abstract percepts, and conceptual hierarchies
	Vertices, Touches, Crosses, and K-points
	Angles
	Line strings
	Curves
	Concavities and missing area
	Interiors
	Elongatedness
	Endoskeleton and exoskeleton
	Equality, for all
	Necker views

	Some general remarks on visual primitives
	Summary

	Visual Patterns
	Motivation
	Pattern-matching
	Matching feature nodes
	Matching numerosity nodes
	Combining feature differences; contextual effects
	Matching entire structures
	Using difference to compute similarity

	Group and pattern formation
	Background from computer science
	Phaeaco’s group-formation algorithm
	Pattern updating
	Comparison of algorithms

	Pattern matching as the core of analogy making

	Long-Term Memory and Learning
	Motivation: is LTM really necessary?
	From visual patterns to concepts
	A slight departure from the Slipnet concept of concept

	Properties of LTM nodes and connections
	Long-term learning of associations
	Links as associations and as relations

	How to remember, and how to forget
	Indexical nodes
	Forgetting concepts
	Justification of forgetfulness
	Forgetting in Phaeaco

	Conclusion: what does “learning” mean?

	Image Processing
	The preprocessor
	Determining the background color

	The pipelined process model
	The retinal processes
	Process A
	Process B
	Process C
	Process D
	Process E
	Process F
	Process M
	Process G
	Process H
	Process i
	Process K
	Process O
	Process P
	Process R
	Process Q
	Process S
	Process Z
	Other image-processing functions

	Putting the Pieces Together
	How BP’s are solved
	First mechanism: hardwired responses
	Second mechanism: the holistic view
	Third mechanism: the analytic view

	What Phaeaco can’t do
	Conjunction of percepts
	Screening out “noise”
	Applying a suspected solution on all boxes uniformly
	Pluralitas non est ponenda sine necessitate
	Meta-descriptions
	Figure–ground distinction

	Summary

	Beyond Vision
	On the primacy of vision
	Does Phaeaco “understand” anything?
	In defense of half of Searle’s Chinese Room
	But the other half of the room is empty
	On the inadequacy of classical logic in cognition

	On the inner “I” and related issues
	What it would take for Phaeaco to possess an “I”
	Can Phaeaco have subjective experiences \(“quali

	Summary
	A recapitulation of ideas introduced in this thesis

