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ABSTRACT 

Phaeaco is a cognitive architecture for visual pattern recognition that starts at the 

ground level of receiving pixels as input, and works its way through creating 

abstract representations of geometric figures formed by those pixels. Phaeaco can 

tell how similar such figures are by using a psychologically plausible metric to 

compute a difference value among representations, and use that value to group 

figures together, if possible. Groups of figures are represented by statistical 

attributes (average, standard deviation, and other statistics), and serve as the basis 

for a formed and thereafter learned concept (e.g., triangle), stored in long-term 

memory. Phaeaco focuses on the Bongard problems, a set of puzzles in visual 

categorization, and applies its cognitive principles in its efforts to solve them, 

faring nearly as well as humans in the puzzles it manages to solve. 
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CHAPTER  ONE 

Prologue with a Book’s Epilogue 
1 Prologue with a Book’s Epilogue 

1.1 Introduction 

In 1967, Проблема Узнавания (The Problem of Recognition) was published in 

Moscow. Its author, Mikhail Moiseevitch Bongard, then entirely unknown in the 

scientific community of Western Europe and the U.S.A., was interested in the 

automation of visual perception. He could afford only as much complication in 

the visual input of his domain as the limited abilities of computing systems of his 

time and place would allow. Thus, he opted for a black-and-white world of static 

figures in two dimensions, in which objects could be either outlined or filled, 

essentially with a single “color” used for both outlining and filling, and 

everything else considered “background”. 

Bongard’s book was translated into English and published in the United States 

under the title Pattern Recognition (Bongard, 1970, pp. 656-661). A few years 

later, this translation caught the attention of Douglas R. Hofstadter, who was 

working on his book Gödel, Escher, Bach: an Eternal Golden Braid (henceforth 

GEB) (Hofstadter, 1979). Hofstadter, however, was less impressed by the ideas 

developed in the main text of the book than by an appendix that contained 100 

problems of visual pattern recognition and categorization. He featured several of 

these problems in Chapter XIX of GEB, in a section titled “Bongard Problems” 

(henceforth BP’s), which is the term that has prevailed thereafter in the literature. 
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“triangle vs. quadrilateral”), but it must be noted that, at a minimum, the BP-

solver is required to discover a description for the left side. 

Hofstadter proposed in GEB a prolegomena to any future system that would 

attempt to automate the process of BP-solving, reducing his ideas to a number of 

principles that have heavily influenced the present work. He also created 56 

additional problems, in which he pushed the ideas beyond simple pattern 

recognition to abstract relations and analogy-making (Hofstadter, 1977). The 

present author, who has also engaged in BP-creation, selected 44 of his own most 

attractive BP’s to bring the total number of BP’s to 200 (Foundalis, 1999), all of 

which are given in Appendix A. 

Phaeaco (pronounced fee-AH-ko; see Appendix C for the origin of this name) 

is a cognitive architecture that focuses on BP’s and proposes a computational 

approach for solving them. The same name also refers to an implemented system 

that, at present, demonstrates its competence in the automation of cognition by 

solving a number of BP’s — most notably a subset of the 100 that were originally 

designed by Bongard. 

1.2 A virtual tour in Bongard’s world 

Bongard’s collection of problems has certain characteristics. An initial small 

number of them, through their solutions, exemplify some of the most basic 

characteristics of the domain, typical of what the BP-solver must be prepared to 

expect. Perceptual features such as “outlined”, “filled”, “large”, “small”, 

“concave”, “curved”, “vertical”, “horizontal”, “elongated”, “open”, “closed”, and 

many more, all pop up in the solutions of the first few problems. Simultaneously, 

a number of elementary relations are introduced, including “more”, “less”, 

“above”, “below”, “up”, “down”, “leftward”, “rightward”, “equal”, “non-equal”, 
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and more. In what follows, the main characteristics of the domain of BP’s are 

introduced, by selecting suitable representative problems for each case. 

1.2.1 Solutions with difference in a feature value 
Most features of shapes in the domain of BP’s are continuous, but some of them 

are discrete. For example, Figure 1.2 shows a problem with a solution based on a 

feature that takes on the discrete values “outlined” and “filled”. This feature will 

be called texture.3 

 
Figure 1.2: BP #3, exemplifying a feature with discrete values 

BP #3 in Figure 1.2 belongs to a special category of a small number of 

problems that a person can solve “instantly” merely by contrasting the “colors” of 

the two sides (here, white vs. black), and seeing the groups that the corresponding 

                                                 
3  Not to be confused with the texture of a surface, a term used in traditional image-processing. 
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shapes form (Treisman, 1986) — an issue that will be examined further in 

§11.1.1. Other kinds of features, however, can have a continuous range of values, 

and are not necessarily solved “instantly”. 

 
Figure 1.3: BP #2, exemplifying a feature with continuous values 

For example, BP #2 in Figure 1.3 has a solution (“large vs. small”) based on a 

feature that takes on continuous values. Whether some object is “large” is not an 

absolute characteristic, but a relative (contextual) one, based on the sizes of 

objects in the other group. Thus, the feature with a continuous range of values in 

this problem is the “area of an object”. 

A third subcategory of problems with solutions based on a difference in 

feature values employs the idea of numerosity, i.e., the number of something. The 

“something” can be anything countable: lines, objects, straight sides, vertices, 

curves, branches, and even abstract relations, such as “levels of nested-ness”. 
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Although computationally the “number of something” can take on any value 

(such as, “1263 pixels”), the cognitive notion of numerosity is different, in that its 

resolution is finer at small values (1, 2, 3,…), but becomes progressively coarser 

for higher values (e.g., 47 is virtually indistinguishable from 48); more will be 

explained in §7.3. 

 
Figure 1.4: BP #31, a solution based on numerosity (of curves) 

Figure 1.4 shows BP #31, the solution of which is “one curve vs. two curves”. 

In BP’s, the numerosity values employed in a solution are never in the range in 

which human cognition has a hard time (e.g., “47 vs. 48”). 

1.2.2 Existence 
A second common theme among the solutions of BP’s is the existence of 

something. The next two BP’s exemplify this idea. 
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Figure 1.5: BP #1, existence of objects (on the right side) 

 
Figure 1.6: BP #40, existence of imaginary straight lines 
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BP #1 (Figure 1.5) is more interesting than a casual look at it might reveal, in 

that its solution can be arrived at in two ways: one is the “immediate” way, by 

contrasting the “whiteness” on the left side against the existence of dark areas and 

lines on the right (similar to BP #3, Figure 1.2); but another way is to contrast the 

existence of an internal representation on the right side (a thought of “something 

that exists”, however vague that might sound now — it will become clearer in 

later chapters) against the nonexistence of a representation on the left. This 

second way of reaching the solution works at a meta-level, because it describes 

representations of objects, rather than the visual objects themselves. 

1.2.3 Structural and relational differences 
The term “structural difference” refers to visual objects forming structurally 

different patterns, as in BP #6  (Figure 1.1). Another example is presented below. 

 
Figure 1.7: BP #69, exemplifying a structural difference 
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BP #69 (Figure 1.7) has a solution with a structural difference: the pattern on 

the left side is, “a tree with a dot at the tip of the trunk”, whereas the pattern on 

the right is, “a tree with a dot at the tip of a branch”. 

Slightly different are the rules that include a “relational difference”. 

 
Figure 1.8: BP #45, exemplifying a relational difference 

The rule in BP #45 (Figure 1.8) is based on a relation: on the left, the outlined 

figure is on top of the filled one, while on the right the relation is reversed. 

It now becomes clear that it is not always possible to make a sharp distinction 

among structural and relational differences. On the one hand, the objects in the 

boxes of the left side of BP #45, for example, might be seen as forming a 

structure consisting of two parts, one filled and the other outlined, such that the 

outlined part always occludes the filled part. On the other hand, the tree-like 

structures in Figure 1.7 might be seen as described by a relation: the dot stands on 
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the tip of the trunk on the left, but does not do so on the right. Thus, we reach a 

notion that will become very familiar in this work: 

A visual pattern is an abstraction, or generalization, that is based on a number 

of concrete visual objects. Examples are the triangles and quadrilaterals of BP #6 

(Figure 1.1), the tree-like objects of BP #69 (Figure 1.7), and relations such as 

those of BP #45 (Figure 1.8). A visual pattern is a sort of statistical average, in 

which the parts of a structure, or relation, and the values of features, are averaged. 

This notion is of crucial importance in the architecture of Phaeaco, and will be 

described more rigorously in chapter 8. 

1.2.4 Relation within a single box 

 
Figure 1.9: BP #56, with sameness within each single box 

BP #56 (Figure 1.9) is of yet a different kind. Here, the relation on the left side is 

“uniformity of texture (§1.2.1)”, but the relation (uniformity) is to be found not 
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across boxes, but within each single box. Thus, the solution for BP #56 is, “every 

object has the same texture”. This type of solution generalizes into one that reads, 

“relation X holds on feature Y”. (See also BP’s #22 and #173 in Appendix A.) 

1.2.5 Solutions and aesthetics 
There are certain BP’s, often very interesting ones, that do not easily lend 

themselves into the previous classifications. Consider Figure 1.10. 

 
Figure 1.10: BP #108, types of “flowers” 

BP #108 (Hofstadter, 1977) contains “flowers” in all 12 boxes, but the 

“petals” of the flowers on the left taper off, while those on the right grow thicker, 

in some abstract sense. This problem could be categorized as “different structures, 

or patterns” (§1.2.3), but what exactly it is that makes these structures different (if 

we want to be precise and avoid references to terms such as flowers, petals, etc., 

which are non-geometrical and foreign to a non-terrestrial culture) is hard to 
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define in formal terms, using geometric primitives. The simplification that occurs 

by using terms such as “flower” and “petal” is what makes this BP appealing. 

A totally different example is shown in the following figure. 

 
Figure 1.11: BP #121, with a code-breaking type of rule 

In BP #121 in Figure 1.11 (Hofstadter, 1977), the shapes above and below the 

horizontal line in each box adhere to a kind of code, which, on the left, can be 

stated as follows: 

• Each VV corresponds to a circle 
• Each ΛΛ corresponds to a triangle 
• Each VΛ corresponds to a square 
• Each ΛV corresponds to “empty” 
• Finally, left-over (single) V’s or Λ’s are ignored 

The assignment of V’s and Λ’s to shapes on the right side is exactly reversed. 

Other aesthetically pleasing problems are those with solutions having multiple 

levels of description, or “recursion”. For example: 
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Figure 1.12: BP #70, one vs. two levels of description 

 
Figure 1.13: BP #71, two vs. one level of description 
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In BP #70 (Figure 1.12), the dual solution is: “major stem branches into single 

twigs, versus major stem branches into twigs that may branch for a second time”. 

In BP #71 (Figure 1.13), which looks superficially very different, the theme is 

essentially the same (with the roles of the sides reversed) at a more abstract level: 

“object within object within object, vs. object within object”. In other words, two 

levels of recursively using the relation, versus a single one. 

It is not coincidental that in Bongard’s list of problems, BP #71 appears 

immediately after its twin sibling, BP #70. Bongard made use of the idea of 

priming in his collection. Often, after introducing an idea through a problem, he 

uses it — but disguised behind different façades — in subsequent problems. 

Last but not least, not all BP’s are relatively easy to solve: some of them are 

downright hard. 

 
Figure 1.14: BP #112, a paragon of simplicity 
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BP #112 (Figure 1.14), for example, looks deceptively simple (Hofstadter, 

1977). Yet it is probably one of the hardest problems in the entire collection of 

200. Another hard problem, BP #180 (Foundalis, 1999), is presented below. (The 

solutions of BP #112 and BP #180 are left as challenges for the reader, but can be 

found in Appendix A as a last resort.) 

 
Figure 1.15: BP #180, another seemingly simple but hard problem 

There are many more ideas that have been expressed in BP’s (some of which 

will be discussed in subsequent chapters), and even more ideas that can be 

potentially expressed. Bongard’s domain is profoundly rich in cognitive content 

— much richer than hinted at in the present introduction. In the chapters that 

follow, an attempt is made to reveal this complexity, and the means by which 

Phaeaco navigates the challenges. 
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CHAPTER  TWO 

Why Are BP’s Cognitively Interesting? 
2 Why Are BP’s Cognitively Interesting? 

2.1 Questioning microdomains 

At least since the early 1970’s, a dilemma has been facing Artificial Intelligence 

(AI). In the early days of AI, systems were often built by choosing a problem 

domain and then stripping away its real-world “burden” — the details that 

grounded the problem in the real world, and which were considered superficial. 

Thus purified and crystallized, “the problem” — evidently a caricature of its real-

world counterpart — was modeled in a computing system. The modeler’s claim 

would be, typically, “The problem has been solved in its abstract form; it now 

suffices merely to add some details to turn it into an implementation of the 

original problem in the real world.” 

The trouble with this approach is that the missing details, which were 

originally considered superfluous, are in reality the determining factor that 

renders the crystallized solution useless. This discovery is known as “the scaling-

up problem” in AI: it is the thesis that it is impossible to start from the “crystal” 

and work one’s way up toward the real-world problem by merely adding details in 

a piecemeal fashion, thereby obtaining an intelligent computer program. Typical 

examples of this situation can be found in programs that worked in so-called 

“blocks worlds” (i.e., simulated geometric solid blocks placed on a tabletop) 

(Huffman, 1971; Waltz, 1975; Winograd, 1972; Winston, 1975). 

 19 
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A different problem concerns the motivation and goals of early work in AI. 

Researchers would typically select a microdomain, not in order to investigate the 

foundations of cognition, but to be able to claim that the microdomain is “solved”, 

or “automated” by their approach, while offering no overall perspective on how to 

generalize from their particular case. Some examples are various expert systems 

that were proposed in the 1980’s as computerized solutions for engineering and 

medical decision-making issues, and Thomas Evans’s ANALOGY program, 

solving geometric analogy problems taken from IQ tests (Evans, 1968). Figure 2.1 

shows an example of a problem that could be solved by Evans’s program, which, 

contrary to widespread belief, did not examine images at the pixel level. Instead, 

its input co prised hand- epared relatio al expressions written in a Lisp-like 

form, repre nting the imag s to some exte t. For the pitfa s of this approach, see 

also §4 . 
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Phaeaco uses the domain of BP’s as a litmus test for its proposed set of principles 

that presumably lie at the core of cognition. Phaeaco should be construed as a 

cognitive architecture rather than as an automated BP-solver. 

A longer response is provided in the remainder of this chapter. First, it is 

demonstrated that the domain of BP’s includes some elements that appear to be 

quintessential in human cognition. And second, it is argued that the domain itself 

is deceptively perceived as a microdomain, and should not be understood as being 

limited by rigid boundaries. In the domain of BP’s the mind is the limit, as will 

hopefully become evident in the sections that follow. 

The following sections examine the relevance of Bongard’s domain to cognition. 

In each subsection, some fundamental aspect of cognition is examined and shown 

to be required for the solution of some BP that has certain properties. 

2.2.1 Pattern formation and abstraction 
Suppose that an observer who has no prior knowledge of alphabets, letters, or 

other culturally related notions is given the following instances of visual input one 

at a time, each appearing shortly after the previous one is erased (Figure 2.2). 

 
Figure 2.2: Instances of visual input 

An observer with human-like cognition neither forgets each instance after it is 

replaced by its successor, nor simply stores it in memory; instead, the observer 
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forms a visual pattern out of the given input instances. This pattern can be either a 

sort of “summary representation” of the individual instances, as in the prototype 

theory of concepts (Hampton, 1979; Rosch and Mervis, 1975; Smith and Medin, 

1981), or the individual instances themselves, as in the exemplar theory of 

concepts (Lamberts, 1995; Medin and Schaffer, 1978; Nosofsky and Palmeri, 

1997), or some alternative (Goldstone and Kersten, 2003; Hofstadter, 1995a; 

Murphy and Medin, 1985; Rehling, 2001). (More on theories of conceptual 

representation in §6.1.) Regardless of what components constitute the visual 

pattern, the latter encapsulates some information. For example, the observer 

knows that the slopes of the slanted lines in Figure 2.2 are within some bounds, 

and the altitude of the horizontal-like line is typically within some limits. Not only 

are there limits to the variation of such features, but there is also a mean value and 

a variance. These are perceptible because the observer can reproduce a “typical” 

instance upon request, which will have the horizontal-like line, for example, 

positioned close to the middle of the figure. Conversely, the farther away from the 

middle this line is placed, the more atypical the produced instance will look. 

 
Figure 2.3: One way to depict a summary representation of the input in Figure 2.2 

Figure 2.3 shows pictorially some of the statistics perceived by the observer. 

In particular it shows the average and variation in slope of the two slanted sides, 

the location of the horizontal line, and possibly the width of various lines (but 

note that lengths are not drawn to scale). It also omits several other features that 

are possibly perceived, such as the occasional short lines at the bottom and top of 
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some input instances (the serifs). It must be emphasized that Figure 2.3 depicts 

neither a visual pattern according to some particular theory of conceptual 

organization (e.g., the prototype theory), nor Phaeaco’s representation of a 

pattern. It merely suggests the idea of a “visual pattern” for the purposes of the 

present discussion. 

Visual patterns are formed by the contents of the six boxes on each side of a 

BP. Often, the patterns of the two sides do not exhibit an immediate difference, 

i.e., the observer perceives the same pattern on both sides after just a cursory look.  

 
Figure 2.4: A cursory look allows perception of a single pattern only in BP #53 

Consider BP #53 in Figure 2.4. The pattern formed on both sides can be 

described succinctly as “polygon inside polygon”. Most solvers discover the 

difference in the number of sides between the inside and outside polygons only 

after a careful examination of each individual box and after reaching the idea 
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“count the sides”. Another such example is BP #108 (Figure 1.10). Some 

problems, however, the solutions of which are usually based on a structural 

difference (§1.2.3), do exhibit patterns on the two sides that are more readily 

perceptible as different, as in BP #6 (Figure 1.1) and BP #183 (Figure 2.5). 

 
Figure 2.5: The different patterns in BP #183 are readily perceptible 

Nonetheless, a visual pattern can be formed whether or not the input instances 

are similar. Consider BP #1 (Figure 1.5): the solver, observing the right side, 

forms a pattern that can be described as “some figures”. Naturally, if the domain 

provides a richer context (e.g., real-world, animated photographs), the pattern on 

the right side of BP #1 will be more specific (e.g., “black-and-white, two-

dimensional, still figures”). The way the context influences what is and is not to 

be included in a pattern is subtle and fundamental in cognition, and will be 

examined in more detail in §8.2.3. 
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2.2.2 Pattern-matching, recognition, and analogy-making 
Just as storage is meaningless without retrieval, so pattern formation is useless to 

a cognitive system without pattern-matching, i.e., the ability to retrieve a pattern 

that matches best with a new input instance. Bongard and other scientists have 

long appreciated the importance of this cognitive ability. Hofstadter has opted for 

the term analogy-making (Hofstadter, 1995a), because he is interested in the more 

abstract, higher-level, fluid, human-specific manifestation of this mechanism. In 

truth, there is no sharp dividing line between “pattern-matching” and what most 

cognitive scientists would accept as an instance of analogy-making. Consider 

Figure 2.6. 

 
Figure 2.6: Input instances that progressively deviate from a given instance (top) 
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The learned pattern depicted in Figure 2.3 matches (i.e., the statistics of its 

features include squarely the features of) the top instance of Figure 2.6. Moving 

progressively, however, toward the two instances at the bottom, we pass into an 

area where a mechanism finding any resemblance between the learned pattern and 

these two instances would be more appropriately called “analogy-making”. This 

is because the statistics of the learned pattern describe neither the complexity of 

the bottom-left instance, nor the simplicity of the bottom-right instance; hence, 

neither of these two instances matches the pattern. Still, some components of their 

structures can be seen as analogous to components of the pattern. Somewhere 

between them is a gray area of input instances for which it is difficult to call the 

mechanism either “pattern-matching” or “analogy-making” (see §8.4). 

The domain of BP’s abounds with problems throughout the entire spectrum 

from pattern-matching to analogy-making. 

 
Figure 2.7: Analogy making in BP #97 (or is it pattern formation and matching?) 
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BP #6 (Figure 1.1, “triangle vs. quadrilateral”) is an example of simple pattern 

formation and matching: the pattern of a triangle is formed out of the six instances 

on the left, and is contrasted with the pattern of a quadrilateral formed out of the 

six instances on the right. Similarly, the pattern of a triangle is at work on the left 

side of BP #97 (Figure 2.7), but in this case the degree of abstraction required is 

higher: the solver must perceive, for example, that each row of small circles in 

box I-C forms (is analogous to) a side of a triangle — a perceptual feat that is 

neither automatic, nor trivial, as will be shown in §3.1.1.  BP #170 (Figure 2.8) 

moves even further along the spectrum toward analogy-making, requiring the 

solver to retain only the essence of the structure in each of the 12 boxes, mentally 

eliminating the irrelevant details. Seeing the analogous parts in these figures is an 

example of analogy-making (see also §8.4). 

 
Figure 2.8: Analogy-making seems to be at work on the left and right sides in BP #170 
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2.2.3 Clustering and Categorization 

 
Figure 2.9: BP #166, an example of involuntary clustering 

Consider BP #166 (Figure 2.9). Looking at this problem, we instantly see not 

merely dots, but clusters of dots. The construction of clusters of “things that go 

together” is another fundamental mechanism of cognition. It is the same 

mechanism that allows us to separate leaves from pebbles on the ground; place 

toasters, blenders, ovens, refrigerators, and coffee-makers in one mental category 

(“electrical appliances”); and even construct ad hoc, spontaneously manufactured 

concepts under pressure, such as children and jewelry as “things to take out of a 

house in the event of a fire” (Barsalou, 1983). 

The placement of dots into groups in BP #166 is automatic: our visual system 

cannot avoid the perception of dot-clusters. In other cases, however, some mental 

effort is required to perceive the categories. Consider BP #90. 
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Figure 2.10: What constitutes a cluster in BP #90 is not immediately obvious 

A cursory look at the ovals in BP #90 (Figure 2.10) might lead us to perceive 

first the clusters consisting of ovals that touch each other (i.e., the connected 

components in each box), but these are irrelevant to the solution. The solution can 

be reached only via the idea (conscious or subconscious) of focusing on white 

ovals connected with each other. This idea is reached under the (mild) pressure 

constituted by the thought “I have been asked to solve BP #90”. A more urgent 

pressure, such as the smell of burnt material in a house, can lead to the previously 

mentioned ad hoc category of “precious object”. Although the special term goal-

derived category has been reserved for this latter kind of categorization in 

psychology, Phaeaco treats all categorization in a uniform way (see chapter 8). 

It might be thought that categorization and pattern-formation (§2.2.1) are the 

same mechanism. To avoid any possible confusion, “categorization” will be used 

in the present text to refer to the assignment of an element to an already existing 
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cluster, whereas “pattern-formation” will refer to the process of clustering, i.e., 

the formation of a category, which, as will be explained in chapter 8, includes a 

core, a halo, and possesses statistical properties. 

2.2.4 Memory and learning 
The ability to learn new patterns, storing them in a long-term memory (LTM) and 

retrieving them later, is a fundamental property of cognition that can be examined 

in the domain of BP’s. Forming a pattern (§2.2.1) is, of course, a type of learning; 

but it can occur also in short-term memory (STM), and represents a single facet of 

the complex problem of learning. STM-type learning is exhibited by simple4 

biological creatures (e.g., spiders) as habituation: a spider can be “habituated” to 

stop rushing toward the source of stimulation on its web after repeatedly finding 

out that the source is inedible (Arms and Camp, 1988). More complex creatures, 

however (e.g., most vertebrates, some mollusks, etc.), possess an LTM, which 

makes them capable of exhibiting more cognitively interesting behaviors, 

including (among a few mammals) the sense of “self ”, which they acquire by 

being able to know that they are “the same” individuals they were days, months, 

and years ago. A biological creature lacking LTM is more or less an automaton 

that responds to stimuli only on the basis of “now” (or, at best, “a few moments 

ago”). 

It is important that a BP-solving system possess LTM for the following 

reason. Consider a system S´ that possesses LTM and a system S that lacks it, all 

other features of S´ and S being identical. Assume that among the identical 

features shared by S´ and S are a set of visual primitives P. Then S is capable of 

solving only those BP’s with solutions that can be expressed by a relatively 
 

4  To avoid controversy regarding the biological meaning of “simple organism”, the term is used 
here to mean an organism that appeared relatively early in evolutionary history. 
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simple combination of elements of P, whereas S´, being able to learn new 

concepts — turning them into a new layer of “primitives” P´ in LTM — is in a 

position to reach more directly the solution of a much larger number of BP’s. 

Although in principle S is also capable of reaching the solution of the same BP’s 

as S´ (since, after all, all solutions must be expressible by the same set of 

underlying primitives P), this remains a theoretical possibility only: a capable and 

careful tutor can lead S´ into learning those concepts (P´) that are relevant to the 

solution of a large number of BP’s, whereas S must struggle to “discover” those 

concepts by itself, always holding everything in LTM. Given the exponentially 

large number of concepts that are combinatorially expressible in terms of 

primitives, chances are that S will not reach the solution of those additional BP’s 

within a reasonable amount of time. 

 
Figure 2.11: Learning and an LTM seems to be necessary in BP #100 



  Why Are BP’s Cognitively Interesting? 

  

32

A BP that demonstrates this idea is the last one in Bongard’s original 

collection. The boxes on the left and right side in BP #100 (Figure 2.11) seem to 

be insufficient by themselves to define what each corresponding pattern is. 

Geometrical properties, such as a closed area, a pointy top, or two “legs” at the 

bottom, are inadequate for a definition of the pattern either because some 

members of the defined side lack those features, or some members of the other 

side possess them. Only a learner who has been trained by hundreds of examples 

of the Cyrillic letters “A” and “Б” in various fonts and has created such concepts 

in LTM is able to solve this problem. 

One might counter-argue that the patterns for “A” and “Б” can be learned in 

STM alone, assuming each side of this BP contains hundreds of boxes. Although 

this is true, there are two problems with this idea: first, we (possessing LTM) are 

able to solve BP #100 as it is, with only six boxes per side; and second, a system 

that forgets all that it has learned once it is turned off and has to undergo an 

arduous process of re-learning by being exposed to hundreds of examples each 

time is utterly unsatisfying. No real cognitive creature blanks its memory and re-

runs the education of its childhood every time its cognition is reactivated after a 

period of inactivity. Accordingly, Phaeaco possesses LTM, which resembles the 

Slipnet of Copycat (Mitchell, 1990), but has certain additional features. The 

details are discussed in chapter 9. 

2.2.5 Design and creativity 
An issue that exceeds the scope of the present thesis (and yet must be mentioned, 

because it suggests a direction for future development) is that of designing BP’s. 

Can a program exhibit creativity by designing genuinely new BP’s that not only 

present a challenge to the solver but are also aesthetically pleasing (§1.2.5)? How 

is creativity limited (if at all) by the number of primitive (“hardwired”) perceptual 
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elements (i.e., innate knowledge of points, lines, slopes, etc.) of the program? Is 

Phaeaco’s architecture sufficient to address the problem of creativity, or would a 

major architectural reorganization be necessary? These are all interesting 

questions that can be explored in future projects. 

2.2.6 Language and communication 
By addressing the grounding problem in language, the BP domain can be a 

platform for generating and testing hypotheses concerning relationships between 

vision and language. Phaeaco builds relatively rich internal representations of the 

figures it receives as input, but describes linguistically the attributes of such 

representations in a trivial way, by outputting pre-manufactured5 English words 

that more or less correspond to such attributes (more in §5.2). A more thorough 

linguistic approach can be envisaged, in which it is learned that the morphemes of 

a language are formed out of smaller constituents (graphemes or phonemes), and 

that such linguistic units (the morphemes) are associated with (“grounded” in) 

visual percepts. Combinations of morphemes can then be used to describe more 

complex portions of representations. A proper approach in such a linguistic 

system requires that the system learn the syntactic rules of the language, 

according to which morphemes are combined together to express internal 

representations. It would then be possible to examine the problem of language 

development and communication between the system and a human interlocutor, 

which is absent from the present stage of Phaeaco’s implementation. 

 
5  This means that the English words that Phaeaco outputs at present have been hardwired into its 
code and resource files, although as will be explained in §5.2 there is a mechanism by which new 
words can be added. 
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2.3 On the futile quest for a precise delineation of BP’s 

Two related issues are examined in this section. The first is the suggestion that 

cognitive interest in the BP domain is limited because it is a microworld, akin to 

chess and tic-tac-toe: it does not scale up. The second issue concerns the attitude 

assumed by some researchers when confronted with this domain: “Let us define 

precisely what the domain is.” In the following subsections, the first idea is shown 

to be incorrect, and the second one inappropriate. 

2.3.1 Beyond Bongard’s world 
Bongard did not specify explicitly any restrictions on his problems, but some 

limitations can be inductively inferred. For example, all problems in his collection 

consist of black-and-white figures, suggesting black-and-white pixels if converted 

to digital form. His figures are also two-dimensional and, of course, static 

(lacking motion). A subtler characteristic is that the rules that solve BP’s should 

be based on the geometry of the input only. This means that a geometer, using no 

culture-specific knowledge, should be in a position to understand the rule. Thus, a 

BP that shows triangles and rectangles is a valid one, but a “BP” that contrasts 

furniture with kitchen utensils is invalid. This principle follows inductively by 

examining all 100 problems designed by Bongard, although there are occasional 

instances in which it could be argued that he ventured slightly outside this 

“geometry only” principle (for some examples, see BP #69 in Figure 1.7, and BP 

#100 in Figure 2.11). Hofstadter’s BP #108 (Figure 1.10) is another case in point. 

The examples that follow attempt to show that Bongard’s world can be richer than 

first imagined, even adhering to the restrictions implicitly present in the domain. 
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Figure 2.12: BP #196, with “shades of gray” (“colors”?) 

BP #196 (Figure 2.12) is the first in a series of problems designed to 

exemplify the flexibility in the conception of a BP afforded by the domain. In BP 

#196 the textured area of each box can be seen as a shade of gray, if perceived as 

an average number of black pixels per unit of area (which is the metric that can be 

used in the solution of this problem). From a more abstract perspective, however, 

such textured areas can be construed as substitutes for colors. Naturally, adding 

real colors would lead to a further extension of the domain. 

In chapter 10 it will be explained that Phaeaco can perceive not only shades of 

gray, but true colors of photographic quality (§10.1), and can represent them 

internally, although it cannot perceive complex real-life objects at present. 
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Figure 2.13: Objects with three dimensions in BP #63 

Bongard experimented with the idea of three dimensions, but only within the 

overarching principle that the solution must be easily derivable from the two-

dimensional geometry of the input. For example, in BP #63 (Figure 2.13), the 

geometric solution is that, on the left, the rightward sides of the objects are 

thicker, while on the right the leftward sides are thicker. Although the dichotomy 

“thicker vs. thinner” is sufficient for a correct description of the solution, the 

human visual system perceives immediately the thickness of each object in the 

third dimension, and interprets the thicker sides as shadows produced by the 

different orientation of the source of light on each side of the problem. Indeed, the 

concept of “shading” was Bongard’s preference for expressing the solution 

(“shading thicker on the right vs. shading thicker on the left”). 

A problem that utilizes directly the ability of our visual system to perceive in 

three dimensions is the following. 
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Figure 2.14: Direct perception of third dimension in BP #195 

In BP #195 (Figure 2.14), each box contains objects separated with a vertical 

bar in a left and right group. Horizontally, the corresponding elements of each 

group are identical. In the left-side boxes of BP #195, the lower two objects are 

closer together than the upper two ones (the opposite relation holds in the right-

side boxes). If the left group of objects in a single box is directed to our left eye, 

and the right group in the same box to our right eye, our visual system perceives a 

single group (with both eyes) within the box, where the lower object stands out in 

the third dimension, in front of the upper object. (On the right side, the lower 

object appears behind the upper one.) In neurological terms, our visual cortex 

records the visual disparity of the images of the upper and lower objects, and the 

magnitude of this disparity gives us a measure of the distance in the third 

dimension between the two objects (Thompson, 1993). 
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Figure 2.15: Motion in BP #198 

 
Figure 2.16: Navigation in BP #176 
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One might argue that if colors and a third dimension do not impose limits on 

what is explorable in the static world of BP’s, motion does. But BP #198 (Figure 

2.15) offers a counterexample in which motion is perceived as a series of 

snapshots along the trajectory of a moving object. The solution of BP #198 is that 

the “moving” object arrives and stays in a certain region on the left (or starts off 

from the region and moves out of it), but passes through the region on the right. 

BP #238 (Figure 2.16) is related to motion, but of a different nature. Here we 

have a problem of navigation. In each box the lower dot is reachable from the 

upper dot with a (possibly curved) line that does not cross or touch any of the 

intervening “obstacles”. On the left side, all dot-connecting pathways of minimum 

length are much shorter than the corresponding minimum-length pathways on the 

right side. 

 
Figure 2.17: A different navigational problem in BP #175 
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The issue of navigation is encountered also in BP #175 (Figure 2.17), as 

trying to pass a smaller object through the “orifice” of a larger one. The problem 

here is not merely one of measuring the overall size of the small object and testing 

whether it is smaller than the “empty area” inside the larger object, because 

several boxes on the right side conform to this description. Nor is it one of simply 

gliding the smaller object leftwards: the objects of the boxes I-C and I-F must be 

rotated to pass through the orifice. To solve this problem a mental model of the 

motion of the smaller object must be made. We often encounter such puzzles in 

real life, e.g., having to move a car out of a parked position in a non-obvious way, 

or having to pass a large piece of furniture through the door of a room. 

 
Figure 2.18: Motion combined with gravity in BP #199 

Before leaving the subject of motion, consider BP #199 (Figure 2.18). Here 

the solution is that, if “gravity” were applied, the objects on the left would stay 
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put, while those on the right would topple over. Even though this appears to be a 

problem of physics, it is still solvable within the domain of geometry: each object 

(or collection of objects) has a center of gravity, the “barycenter”; if a vertical line 

through the barycenter intersects the “base” of the object, the object will remain 

stable; if not, it will topple. 

 
Figure 2.19: BP #200 is a Bongard problem about Bongard problems 

Finally, if we give up geometry as a domain imperative, even the abstract idea 

of self-reference is expressible. For example, BP #200 (Figure 2.19) is a problem 

in which each box itself is a “Bongard problem”. The solution of BP #200 is as 

follows: on the left the solution of the Bongard problem within each box is based 

on the value of a simple feature (texture, area, slope, etc.); while on the right the 

solution of the Bongard problem within each box is based on numerosity (number 
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of sides, objects, branches, etc.). BP #200 could thus be termed a meta-Bongard 

problem.6 

Thus, the domain of BP’s can be utilized to experiment with a variety of 

cognitive dimensions that do not immediately appear amenable to such 

experimentation. Although, to be sure, there are many issues in cognition that 

would seem to be difficult to address via the BP domain (e.g., the robotic 

experience of interacting with a physical world, speech recognition and 

production, music perception, and many more), the hope is that the domain of 

BP’s will prove to be suitable for addressing certain core issues in cognition, on 

which most other issues are based. 

2.3.2 Defining the domain 
Some researchers, when confronted with the BP domain, try to define precisely 

(mathematically, if possible) the problem at hand.7 Usually this is the case with 

people who, having strong mathematical training and background, are accustomed 

to giving precise definitions to the objects they study. Under this approach, 

anything undefined (or “ill-defined”) cannot be an object of scientific inquiry. 

Specifically, they would like to describe a function F(x), in which x is a piece of 

visual input (a m × n matrix of pixels, for example, where each pixel is a number 

from a suitable range of possible numbers), and F returns true if x is a “valid” BP, 

and false otherwise. In other words, F would characterize some inputs as BP’s, 

and all others as non-BP’s.8 

 
6  The author and Joseph A. L. Insana have created an entire collection of meta-BP’s (and even 
meta-meta-BP’s) (Foundalis, 2001).  
7 Thanks to Ralf Juengling (personal communication) for bringing up this issue. 
8 Hence, F is a total recursive function in computability terms, or a decidable algorithm. 
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The problem with this attitude is that it creates an arbitrary group of objects, 

christened “valid BP’s”, or “the BP’s we want to study”, whereas no such group 

exists objectively in reality. What exists in reality is the human mind and its 

fascination with some puzzles. The precise delineation of those inputs considered 

to be valid BP’s fundamentally changes the nature of the cognitive quest. Instead 

of: “Here is a set of problems that appear interesting to people; let us explore the 

cognitive mechanisms people use to solve them”, the quest becomes: “Here is an 

ad hoc set of problems; let us write a program that can solve all of them”. In this 

way, rather than aiming at cognitive exploration, the solution of BP’s becomes a 

self-serving end: the researcher sets out to write a program so as to claim that the 

solution of BP’s in “the domain” (the arbitrarily decided one) has been fully 

automated — and then possibly to move on to different domains. The pitfalls of 

this approach are examined in more detail in chapter 4. 
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CHAPTER  THREE 

Universality and Objectivity of BP’s 
3 Universality and Objectivity of BP’s 

3.1 Are BP’s cross-cultural? 

The present thesis is a product of a particular, but dominant, human culture, the 

so-called “Western” one. The scientific world-view of this culture can trace its 

roots back to the early explorations of nature by Egyptian and Mesopotamian 

cultures that emerged at least 7,000 years ago. The particular geometric concepts 

that are assumed, in the present text, to be fundamental and well-understood by 

everyone (e.g., “triangle”) were explored to a great extent by the Greeks, as early 

as 2,600 years ago. Subsequently geometry became part of primary education, and 

was considered a foundational element of the arts (painting, sculpture, 

architecture) and sciences (physics, astronomy). Cognitive science, however, 

seeks to explore the nature of cognitive universals9, not of concepts assumed as 

“givens” by a particular culture. Is the concept “triangle” understood in a 

universal way across cultures, or is this impression a bias of our “Western” 

culture? The following subsection attempts to shed some light on this issue. 

                                                 
9  In principle, cognitive science seeks to explore cognition in general, not necessarily the only 
known implemented example of it, which is constrained by biological evolution. But without 
knowing the answer to the question of whether cognition is implementable in a different medium 
or not, it is best to confine the scope of questions asked about “universals” in this text to the single 
known instance, i.e., human cognition in the context of human culture. 

 45   
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3.1.1 Geometry as perceived by peasants and indigenous people 
In 1931–32, the Russian psychologist Aleksandr R. Luria and his team conducted 

a series of studies probing the cultural foundations of cognitive development — 

that is, the extent to which culture (and language) influences the formation of 

concepts. His subjects included illiterate peasants from “the remoter regions of 

Uzbekistan and Kirghizia, in the kishlaks (villages) and dzhailaus (mountain 

pasturelands) of the country” (Luria, 1976). Among the issues examined by Luria 

was perception of basic geometric forms. The views of his subjects are interesting 

in the context of the discussion on human geometric universals. 

In one of the experiments (conducted in far-from-ideal conditions), Luria 

showed to his subjects a list of drawings similar to the following. 

        

1 2 3      

  

   

   

4 5 6 7 8 9 10 11 

 

 

      

12 13 14 15 16 17 18 19 

Figure 3.1: Geometrical figures presented to Luria’s subjects 

He then asked subjects to name each figure. The subjects were coming from 

four different population groups: ichkari women (illiterate), women students in 

short preschool courses (barely literate), collective-farm activists, and women 

students at a teachers’ school. Only the last group of people — the most educated 

ones among all subjects — used mostly geometrical names to name the figures 



3.1 Are BP’s cross-cultural? 

 

47

either directly (“circle”, “triangle”, “square”, etc.), or through descriptive phrases 

(“something like a triangle”, “a square made of dots”). Ichkari women — the least 

educated group — never referred to the geometrical shape of the figure, preferring 

object-names instead. Thus, they would call a circle a moon, a watch, a bucket, 

and so on; a triangle would be a tumar (an Uzbek amulet); and a square would be 

a house, a door, a mirror, or an apricot-drying board. Table 3.1 summarizes the 

naming preferences of the various groups of subjects. 

Subject group 
Number of 
subjects 

Geometrical 
names 

Object-like 
names 

Ichkari women 18 0.0 % 100.0 % 
Women in preschool courses 35 14.7 % 85.3 % 
Collective-farm activists 24 41.0 % 59.0 % 
Women in teachers’ school 12 84.8 % 15.2 % 

Table 3.1: Naming preferences among Luria’s subjects 

Especially interesting were the answers obtained from illiterate subjects when 

asked to group the figures together. For example, an illiterate woman, age 24, 

from a remote village, formed the following groups. 

   
“These are all tumars.” 

5 4 16  
   “That’s a glass and that’s a glass, but 

with a wide bottom.” 
 12 17  

   “This moon should go by itself.” 
  2  

   “This thread should go by itself.” 
  19  
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Another subject, age 19, an ichkari woman, gave the following names. 

 
plate 

 
tent 

 brace-
let 

beads 
 

tumar 

1  11  2  13  10  

 kettle-
stand 

 
mirror 

 
cradle     

4  16  5      

 
gold 
tumar 

 

mirror Uzbek 
clock 

silver 
tumar 

 

mirror 

8  14  6  7  12  

When asked to group the figures, she put the “valuable tumars” together (7 

and 8), and also the “mirrors” (12, 14, and 16), declaring that none of the other 

figures were similar. 

Answers along the same lines were obtained by other illiterate subjects. On 

the contrary, subjects who had even minimal exposure to formal education did 

make occasional use of geometric names, and the percentage of such use 

increased with the sophistication of the educational background (Table 3.1). 

However, the experimental method used by Luria and his colleagues, 

particularly their reliance on conversation and linguistic descriptions, is highly 

suspect. Recall that Luria performed his experiments in the ex-Soviet Union at a 

time when it was considered imperative to amass evidence for the necessity of 

educating the nation’s largely peasant population and working class. Could 

further, language-independent experiments paint a different picture? 

Indeed, this idea seems to be confirmed in recent experiments in which a team 

of researchers led by Stanislas Dehaene studied the indigenous Amazonian tribe 

of Mundurukú (Dehaene, Izard et al., 2006). Children and adults of the tribe, who 

had received no schooling and had no experience with graphic symbols, maps, or 

a rich language of geometrical terms, were asked to find which figure from a 
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group of six figures did not belong to the group. For example, the upper right box 

in Figure 3.2 shows a non-trapezoid, whereas all the other boxes contain 

trapezoids. The participants were asked to point to the “weird” or “ugly” figure. 

 
Figure 3.2: Sample problem of type “find the odd-man-out” used by Dehaene et al 

According to the study, Mundurukú adults, children aged 6, and also a control 

group of 6-year-old American children all performed similarly. Only American 

adults performed significantly better. However, all groups showed a shared 

competence and understanding of basic geometrical concepts. 

It is almost certain that performance in Bongard’s domain correlates strongly with 

prior education. But given a group of people from a culture who are educated 

enough to appreciate the domain a question that arises is whether there is any 

property of the performance of BP-solving that can be measured objectively. 

With this in mind, an experiment was administered to American college 

students, aiming at establishing a more or less evident result: that some BP’s are 

easy, some others are hard, and that all intermediate degrees of difficulty are 

possible. Each particular BP-solver usually acquires a personal sense regarding 

the difficulty of each problem they attempt to solve, but what is required is some 
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objective measure of this difficulty. A secondary aim of the experiment was to be 

in a position to compare Phaeaco’s performance with that of human solvers 

(although see chapter 4 for an important caveat regarding the conclusions drawn 

from such a comparison). 

3.2.1 An experiment with American college students 

Subjects 

The subjects were 31 students of Indiana University, at different levels in a four-

year bachelor’s program. Their educational background varied, but none was 

studying for a degree in mathematics, physics, astronomy, computer science, or 

chemistry, or any curriculum related to those disciplines. They had been exposed 

to high school geometry at various levels of rigor. Their age ranged between 19 

and 25 years. 

Method 

Subjects were presented with a special “Experimenter” session of Phaeaco, in 

which the program presents BP’s in a predetermined order. The 12 boxes of the 

problem are initially covered with a mask, and when the subject signifies they are 

ready (by pressing the spacebar) the mask disappears and the BP is shown, while 

a chronometer starts recording the time. As soon as the subject thinks they know 

the solution of the problem they hit the spacebar, and the mask hides the 12 boxes 

again, while the chronometer stops and a dialog-window pops up, prompting the 

subject to type (in natural language) the rule for the left and right side. If the 

subject has no answer, they may signify this by clicking on a “Give up” button. 

The subject can also “Take another look” (another button on this window) at the 

problem, in which case the chronometer resumes counting from where it stopped 

earlier. This feature, which can be repeated any number of times, was deemed 
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necessary because subjects are instructed to hit the spacebar as soon as an idea for 

a solution occurs to them, without attempting to express the idea linguistically 

first. Sometimes the subject hits the spacebar too soon, and wishes to reconfirm 

the idea before writing it down on the dialog-window, hence the need to take 

another look. As soon as the subject moves on to the next problem, the overall 

time spent thinking for a solution on the previous problem is recorded in a file. 

The subject cannot return to work again on a not-answered (skipped) BP once the 

next BP is shown. Each session lasts a full hour, and contains the first 100 BP’s, 

(see Figure 3.5). Subjects try to solve as many BP’s as they can within this time. 

Before starting the actual session, the subject goes through a practice run that 

includes a small number of BP’s (up to five), and is designed to familiarize the 

subject with BP’s and the interface. These BP’s make use of a few elementary 

concepts (such as “outlined”, “filled”, “large”, “small”, etc.). The following 

instructions are read to the subject when the first such BP is shown: 

“What you see here is a ‘problem’ that gives you six boxes on the 

left, and six boxes on the right. Each box contains a figure, or 

figures, and your task is to find out why those figures on the left 

have been separated from those on the right. There is some rule, 

some underlying principle, by which the figures have been 

separated like that, in two groups. For example, it’s rather evident 

what the rule in this example is, right? [Figure 3.3] Those figures 

on the left have more white than black, and those on the right have 

more black than white. Correct? [all subjects invariably nodded at 

this point.] As soon as you discover a rule that describes the 

contents of the boxes on the left side, and none of the boxes on the 

right side, you hit the spacebar. Please do so, now. [The subject 
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hits spacebar, the mask hides the problem, and the dialog-window 

pops up.] On this window, you can type your answer. For instance, 

here you can click on the box for the left-side rule, and type simply 

“white”, or “outlined”. On the right-side box you can type “black”, 

or “filled”. Sometimes the rule for the right side will be simply the 

opposite of the left; in that case you can leave the right-side box 

blank. Use simple English, and type only what is necessary to let 

me know that you understood the rule — no full syntax is needed.” 

 
Figure 3.3: The first BP in the familiarization session 

After explaining the “Take another look” button, and moving on to the next 

problem, the subject was cautioned on the following issue. 

“Notice that, in the rule you come up with, you can’t make use of 

the position of the box within the matrix of six boxes. For example, 
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you cannot say, ‘The figure at row one, column two, is such-and-

such’, or, ‘All figures of the first column are…’, and so on. Your 

rule must treat all six boxes as a lump, with no particular order.” 

After making sure the subject understood the above, one more subtle point 

was brought to their attention. 

“Now, here is another thing you cannot do with your rule. Take a 

look at this problem: [Figure 3.4] You can’t say here, for example, 

that there is no black on the left side, but there is some black on the 

right. Your rule must be true for each individual box on the left, 

and false for each individual box on the right. If you say, ‘white 

only’ for this problem, your rule will be wrong, because there are 

several boxes on the right with white figures only.” 

 
Figure 3.4: A familiarization-BP for cautioning the subject on the nature of rules 
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Although all subjects agreed that they understood this last point, in the process 

it was found that a few of them did not heed it. Their answers to such problems 

were removed from the answer set. (Their answers to other BP’s that are immune 

to this pitfall — and those are the majority — were retained, because in such 

cases the pitfall seems to be irrelevant.) 

Once the subject agreed they understood the instructions, the following — 

very significant for the purposes of the experiment — remark was announced. 

“You’ll receive a reward of 10¢ for each problem that you solve 

correctly. Later I will find the number of correct answers and write 

a check to you for the total amount. [It was necessary to explain 

this because in an earlier pilot study some subjects thought the 

reward would be fake.] Now, your task actually is to maximize 

your profit. This means it is up to you to decide for how long 

you’ll be thinking on each problem. Because if you think for too 

long, you might end up with no time to do some easier problems 

that lie ahead; while if you give up too soon, you’ll miss this 

problem, which you might be able to solve if you could think for a 

little longer.” 

The additional element of monetary compensation was deemed necessary for 

the following reason. These subjects, being enrolled in a course in psychology, 

were all obliged by the Department of Psychology to participate in one 

experiment of their choice during the semester. Thus, since they did not volunteer 

their participation, and because the nature of this experiment required them to 

think intensively for one hour, there was the danger that several of them would 

simply click on “give up”, problem after problem, in order to satisfy the said 
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requirement. The monetary reward provided the necessary motivation for an 

honest performance. 

Finally, the exact sequence of BP’s used in the real session is given below. 

The order of problems differs from Bongard’s original one (1–100) for two 

reasons. First, as mentioned in §1.2.5, Bongard often used the idea of priming a 

concept, by first introducing it in a problem and then using some variation of it in 

subsequent problems. The experimental list tried to minimize priming and 

concept interference, allowing relatively “pure” results to be obtained. Second, a 

pilot study showed that subjects generally required a small number of problems to 

“warm up” in the real session, in addition to the BP’s of the familiarization 

session. For this reason, the first five problems of the real session were present 

only for warming up, and their timings were discarded by the experimenter. 

264 160 166 167 173 2 6 1 23 3 5 4 9 8 10
7 11 15 21 39 56 12 24 22 36 85 33 34 38 40

48 47 45 77 51 61 71 81 84 96 89 83 86 91 97
87 88 95 82 78 75 72 70 65 67 66 62 57 50 49
53 46 41 37 35 31 32 25 30 29 13 14 16 17 18
19 20 26 42 27 43 28 44 52 54 93 55 58 63 59
64 60 68 69 73 74 76 94 79 80 90 92 98 99 100

Figure 3.5: Exact sequence of BP’s tested (read by rows; first “real” BP is #2, then #6, etc.) 

Results 

Appendix A, which lists 200 BP’s, also gives the results of this experiment for 

each problem, showing the numbers, mean times, and standard deviations for 

correct answers, as well as the numbers and mean times of no answers and wrong 

answers. Most subjects (17) used the entire hour and answered fewer than the 105 

BP’s listed in Figure 3.5, but nearly half of the subjects (14) were fast enough to 

complete the task in less than an hour. 
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Correct answers No answer Wrong answer  
time (sec.) 95% conf. num. time (sec.) num. time (sec.) num. 

BP #100 5 ±2 14     
BP #1 7 ±2 31     
BP #15 8 ±1 27 30 3 7 1 
BP #95 8 ±2 30 17 1   
BP #3 8 ±2 28     
BP #94 8 ±2 15     
BP #34 9 ±2 30   19 1 
BP #23 9 ±2 30   20 1 
BP #97 9 ±2 29 18 2   
BP #63 10 2 15 19 1   
BP #9 10 3 31     
BP #25 10 3 22 5 4   

Table 3.2: Easiest BP’s 

In agreement with intuition, it was found that the easiest BP’s are as shown in 

Table 3.2. Somewhat surprising was the position of BP #94 (Figure 3.6). 

 
Figure 3.6: BP #94, a surprisingly fast-solved problem 
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Also surprising was the slow response time for BP #2 (Figure 1.3; “large vs. 

small”): 28 subjects answered correctly with an average time of 14 sec. and a 95% 

confidence interval of ±4 sec. This can probably be explained by the early 

appearance of BP #2 in the experimental list, very close to the “warm up” zone. 

Overall, however, there were few other surprises in the collected statistics of the 

problems. The fastest-solved problem, BP #100 (Figure 2.11), shows the effect of 

memory on pattern recognition (all subjects interpreted the Cyrillic letter “Б” on 

the right side of this problem to be the English letter “b”). Comments on the 

statistics of other problems will appear throughout the text, as their cases are 

encountered. 

3.3 Summary 

In conclusion, the experimental observations discussed in this chapter suggest that 

people, when properly questioned, show an innate, cross-cultural understanding of 

basic geometric concepts. Understanding precisely the task of solving BP’s can be 

mildly confusing even for American undergraduate students. Nonetheless, the 

collected statistics, particularly the rather small variance in response times, imply 

that there must be some fundamental cognitive mechanisms at work among those 

people who do understand the task and manage to solve at least some of the 

problems. This, in turn, suggests that the idea of exploring those mechanisms by 

creating a program that automates the task of BP-solving is well justified. 

Automation is the subject of the next chapter. 
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CHAPTER  FOUR 

Automation of BP-Solving 
4 Automation of BP-Solving 

4.1 RF4 and the problem of input representation 

Few efforts have been made to explore computationally the BP domain. One 

attempt that deserves special mention was outlined in a publication that described 

the merits of a general-purpose search algorithm in AI, called RF4 (Saito and 

Nakano, 1993). The algorithm searches a space of formulas of first-order logic by 

performing “a depth-first search on the basis of five criteria for pruning 

undesirable formulae and five transformation rules for combining formulae” 

(ibid., from the abstract). Saito and Nakano examined a variety of domains in 

which RF4 reportedly excels, and one of these domains was that of Bongard 

problems. Saito and Nakano claimed that RF4, which was implemented in a 

personal computer in the C programming language, “solved 41 out of 100 

Bongard problems within a few seconds for each problem”. This bold statement 

implicitly informs the reader that the BP domain is merely a collection of puzzles 

and moreover that it has been successfully tackled by RF4. If 41 BP’s could be 

solved within a few seconds, then perhaps an hour or two would suffice for all of 

the others. Thus, the domain of BP’s would have been automated by 1993! 

The article also provided information regarding the method by which BP’s are 

encoded to be given to RF4. Each figure in a box of a BP is represented by a first-

order logic formula. So, for example, consider Figure 4.1. 

 59   
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Figure 4.1: A single triangle, out of context 

The triangle in Figure 4.1 could be represented by a formula similar to the 

following: 

polygon (X) ∧ outlined (X) ∧ angles (X) = 3 

Figure 4.2: Possible representation of a triangle in RF4 

It is not known whether the above formula would be the exact representation 

of the triangle in Figure 4.1 for RF4, because Saito and Nakano do not provide 

examples of input representation from the domain of BP’s. It is a reasonable 

guess, however, because Saito and Nakano provide as an example the solution to 

BP #6 (Figure 1.1), which they write as follows: 

forall B in boxes, forall X in B, angles (X) = 3 → class1 

In other words, if a figure X of a box B has three angles, then it belongs to 

class 1 (left side of boxes of BP #6). The plausibility of the first-order formula in 

Figure 4.2 is inferred from the observation that if a triangle were represented by 

something as simple as angles (X) = 3, then there would be no way to distinguish 

between outlined and filled triangles (hence, outlined (X)), nor between closed 

and open shapes with three vertices (hence, polygon (X)). 

Further elaboration of the previous argument for the plausibility of the 

formula in Figure 4.2, however, reveals the problematic nature of this approach 
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for input representation. Why should the location of the triangle within the box be 

omitted? After all, the solution of BP #8 (see Appendix A) refers explicitly to the 

location of a figure in relation to its containing box. Hence, the coordinates of a 

center of the triangle (e.g., its “barycenter”) should be included in the formula: 

barycenter (X) = p ∧ polygon (X) ∧ outlined (X) ∧ angles (X) = 3 

Otherwise the representation makes the a priori assumption that the center of 

the figure is irrelevant; but one cannot know what is relevant in the solution until 

one solves the problem. 

For similar reasons, the list of terms that describe the triangle in Figure 4.1 

must grow to include the width, length, and slope of each side, the coordinates of 

each of the three vertices, and possibly more. Indeed, even the fact that this is a 

triangle is not known before solving the problem, as can be seen in BP #85. 

 
Figure 4.3: The triangle of Figure 4.1 in the context of BP #85 
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In BP #85 (Figure 4.3) the box of Figure 4.1 is included as box I-B. Yet the 

solution of this problem does not use the concept “triangle” at all; instead, it uses 

“three lines”. On one hand, a logical formula such as the one in Figure 4.2 (or any 

of the extended ones proposed above), which omits the crucial term lines (B) = 3 

(where B is a box), and instead describes the input as a triangle, makes a wrong 

representational assumption that would lead the system to fail to find a solution. 

On the other hand, including the term lines (B) = 3 would prematurely reveal the 

solution to the system. 

One might argue that a good logical system with theorem-proving abilities 

should be in a position to infer that there are three lines in the figure, given that 

the rest of the formula describes a triangle. Though this is true for elementary 

geometric structures such as triangles, the BP domain is far too complicated to 

allow formal deduction of properties in general. 

 
Figure 4.4: BP #29, where shape is irrelevant 
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Consider BP #29 (Figure 4.4), included in Saito and Nakano’s article. The 

irregular shape that encloses three circles in box I-A is too complicated to be 

described accurately by logical formulas of reasonable length. Thus, a predicate 

such as closed_region (X) might appear reasonable enough to be included in the 

representation. This choice makes the assumption that the particular shape is 

irrelevant. This is correct in BP #29, because the solution involves counting the 

circles that are inside and outside the larger figure. How can one know, however, 

before solving the problem, that the shape of a figure is irrelevant? Other BP’s use 

shape as an integral element of their solution. 

 
Figure 4.5: BP #20, where shape is important 

In BP #20 (Figure 4.5), for example, a predicate such as closed_region (X) is 

useless: the solver must perceive the “neck” and the two bulges in each figure 

before noticing the placement of the two dots in relation to the two bulges. But it 
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is not possible to infer the existence of bulges in such figures from predicates such 

as closed_region unless an explicit description of the curve that forms the region 

is given — for example, in terms of a long sequence of predicates that describe 

short pieces of straight lines that meet each other end-to-end. Thus, we end up 

with two choices. 

• Either the logical description is “honest”, but too long and unwieldy 

for manipulation as a predicate calculus formula, 

• or the logical description is short but “dishonest”, giving away some 

predicate crucial for the solution. (bulges (X) = 2 would be such a 

predicate in the previous example.) 

Overall, the conclusion is that logical formulas are the wrong medium for 

representing the input in BP’s. Such formulas require a human “helper” who, 

knowing already what the solution is, uses just the right predicates for describing 

the input. If we assume that such a human helper is unavailable, then the most 

straightforward way to represent the input is to adopt Phaeaco’s approach (and 

that of most other visual processing programs), which is to include explicitly all 

the pixels that form the image (the rectangular matrix of which can be the output 

of a camera, scanner, etc.), and let the program discover any features or relations 

by itself, unbiased by the preprocessing of human helpers. Otherwise we have not 

an automated system but a semi-automated one, in which human cognition plays 

an integral role. 

An additional critique of RF4 from a slightly different perspective has also 

been offered by Alexandre Linhares (Linhares, 2000). In his paper, Linhares 

emphasizes the importance of the ability to re-parse  the input under pressure (as 

in box I-B of BP #85, Figure 4.3), an ability missing entirely from RF4. 
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A different approach to solving BP’s from that of RF4, at least in some respects, 

was that of V. V. Maksimov, a student of Bongard’s (Maksimov, 1975). In the 

early 1970’s, Maksimov used bit-mapped, black-and-white images as input to his 

program, and what is most admirable is that he did so in spite of the severe 

technical restrictions that were present in his computational system. The total size 

of his computer’s memory was a mere 4000 64-bit words, occupied mostly by his 

program, and an additional 4000 words for data manipulation. Each input box had 

a resolution of 45×64 pixels. In total, his computer had 64K of memory in modern 

terms — a volume available in home computers in the West by the mid-80’s. 

Even with these meager computing resources, Maksimov managed to design a 

system that, according to his report, matched the performance of human subjects, 

at least to some degree. It is instructive that he achieved this even though, as we 

shall see, the working principles in his system were far from cognitively plausible. 

 
Figure 4.6: MP #13, three vs. two closed regions (four boxes per side) 

A disclaimer must be made before proceeding: Maksimov’s system did not 

solve any of the 100 BP’s in Bongard’s collection, but a set of 48 specially-

designed problems. They will be called Maksimov problems (MP’s) in this 
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section, to differentiate them from more “regular” BP’s. Each MP could have any 

number of boxes on the left and right side; the usual number was six, but MP’s 

with four or eight boxes per side were common (Figure 4.6). Sometimes, in order 

to gauge the performance of the system, an MP was simply a repetition of the 

previous MP, but with an additional box per side, retaining the solution. At other 

times a quite different type of problem was included, in which a number of boxes 

of unknown category were to be classified into one of two categories, which were 

hinted at by only two sample boxes, given at the upper-left and upper-right corner 

of the input (Figure 4.7). Maksimov called such problems “training sets”, and 

their purpose was to incrementally teach the program the two categories by letting 

it receive feedback from a tutor. 

 
Figure 4.7: MP #11, a training set: “three (upper left) vs. five” (upper right)” 
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Maksimov interpreted the question posed by Bongard not as, “What are the 

cognitive mechanisms that underlie the solution of BP’s by people?”, but as, “Is it 

possible to write a program that can perform as well as people?” Accordingly, he 

employed what was considered standard AI philosophy at the time, treating every 

problem of cognition as one of a search in a combinatorial space of states, and 

applying various heuristics to curb the exponential growth and reach a goal state 

within a reasonable time. He achieved this as follows. 

 

S

C

F

T

Figure 4.8: Tree of descendant images, applying operators contour isolation (C), contour filling 
(F), convex hull filling (T), and separation by connectedness (S) 

A number of operators were applied to a given input image, resulting in a 

corresponding number of descendant images (Figure 4.8). For example, given an 

image with an irregular filled figure as input, one operator would create a new 

image with the convex hull of the figure; another operator would find the outline 

of the filled figure and create a new image with merely this outline in it; and so 
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on. Each of these new images was a descendant of the initial one. Then the 

operators were applied recursively to the descendants, thus producing further 

images and expanding the tree at deeper levels. There were other operators that 

could extract numerical data and make binary (i.e., Boolean) decisions. For 

example, one operator computed the area of a shape (the number of its pixels); 

another (Boolean) operator would decide whether a shape was outlined or filled; 

and so on. The search tree continued being expanded until one of the operators 

resulted in a set of Boolean numbers that had the same value (e.g., true) for all 

images on the left side, and the opposite value (e.g., false) for all images on the 

right side. 

One of the most crucial algorithms in this approach was the grouping of data 

into lots. By this, Maksimov meant a procedure applied to a collection of real 

numbers distributed randomly — but not uniformly — within a range, so that they 

form some natural (i.e., visually discernible) groups. The procedure determines 

the groups and assigns each number to a group. The algorithm proceeds by 

assuming a number of groups, k, into which the data must be divided (i.e., 

assuming a value for one of the parameters that must be determined) and 

computing a number κ, called the index of compactness, from k and the data. It 

then tries to minimize κ by choosing different values for k, because the lowest 

index of compactness turns out to be the one for which the data are “best” 

grouped into lots. Since it would be computationally prohibitive to try all values 

of k in order to choose the best resulting κ, the algorithm makes an ad hoc 

decision, stopping at whatever κ is first found to be smaller than a pre-determined 

threshold, κ*. For example, it is reported that the best value for κ* was found 

experimentally to be 0.25 (for all cases of group-formation, in all MP’s). 
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This procedure, which was Maksimov’s solution for the AI problem of group 

formation, or classification, can itself be classified into one of the well-known 

families of algorithms popular in the field of data mining (Jain, Murty et al., 

1999). 10 Such algorithms can be useful for computationally intensive grouping of 

data, as is common in some engineering fields of AI, where the emphasis is on the 

result, not on the method used to reach it.  On the contrary, in psychology, in 

which it is the method that is investigated and modeled, the criterion for 

correctness is compatibility with human cognition. 

Maksimov seems to claim (in the description of his system) that his approach 

is psychologically plausible because there is agreement with human responses 

(though we are not informed about the nature and timings of such responses). 

Two factors, however, diminish the plausibility of his assertion. 

First, many of his MP’s are too “machine-oriented” — that is, their solutions 

are such that they can be expressed in terms of primitives available to 

Maksimov’s system (e.g., “length of curved lines”) or are reachable by tree-search 

(e.g., “the length of the contour of the convex hull”, as in MP’s #23 and #24), but 

hardly appear natural to people. 

Second, Maksimov’s program operated by selective “brain surgery”: because 

there were severe restrictions on the amount of data that could be present at a 

given time in memory, some pieces of code that were deemed irrelevant for 

certain MP’s were removed when the program was set to work on those MP’s — 

or else the program and the data could not be present simultaneously in memory. 

The trouble is, however, that when a human operator determines which pieces of 

code will or will not be used in a given problem, the system becomes semi- rather 

 
10  The use of a threshold suggests that Maksimov’s algorithm is a variant of the k-neighborhood 
algorithm (see Jain, Murty et al., 1999). 
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than fully automated. It is unknown what the system’s performance would be if 

the program were present in its entirety at all times, and were left to operate on its 

own devices. 

In summary, although Maksimov’s program constitutes the most thorough and 

sincere computational effort made so far in the domain of Bongard problems, it 

falls far short of proposing an adequate, and — most important — cognitively 

interesting approach. 

4.3 How is Phaeaco’s approach different? 

Unlike Maksimov’s system, Phaeaco uses the original BP’s as input (plus those 

designed later by Hofstadter and the author, all listed in Appendix A). And, unlike 

RF4, Phaeaco uses black-and-white pixels as the form in which input is encoded. 

Each BP in Phaeaco’s input consists of 12 boxes, presorted into two groups (left 

and right), and each box has a resolution of 100 × 100 pixels. Phaeaco “looks” at 

the pixels in the 12 boxes, initially in parallel, and then concentrates increasingly 

on particular boxes, according to the visual patterns perceived in them. The details 

of Phaeaco’s processing of input will be explained in chapter 10. 

Some readers might object to the idea that examining black-and-white pixels 

at a resolution of 100 × 100 constitutes “image-processing” in any significant 

sense.11 Such readers would require true-color photographs as input before 

applying the label “image-processing” to algorithms. 

The answer to this concern is twofold. First, Phaeaco is not limited to black-

and-white pixels. It can accept true-color photographs as input, in which case it 

applies traditional contrast-enhancement and edge-detection filtering methods to 

 
11  Many thanks to Katy Börner (personal communication) for raising this issue. 
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convert the input to a black-and-white representation (more in §10.1). And 

second, even with a resolution of 100 × 100 (although Phaeaco is by no means 

limited by this value) there is plenty of room for ambiguity in the input. Even 

though individual pixels have sharply defined values (0 or 1), collections of pixels 

are almost never sharply defined as objects. For example, when is a hand-drawn 

collection of pixels a piece of a straight line, and not part of a curve? When is a 

polygon a circle, and a rectangle a square? Is a hand-drawn scanned figure really 

open, or should it be perceived as closed in the context of other similarly hand-

drawn closed figures? To answer these questions, and many more, Phaeaco does 

not employ crystal-clear definitions, but relies on context. All these potential 

sources of ambiguity, together with a non-rigid way of looking at the input, make 

it much easier to claim that Phaeaco performs not simply traditional image-

processing, but cognitively interesting processing of the input, starting at a very 

low (raw) level. 

Image-processing is not Phaeaco’s focus, however, but only a means of 

ensuring that the input is not formalized and preprocessed, as is the case with 

systems such as RF4. Phaeaco proceeds beyond image-processing, to visual 

pattern-formation, storage of patterns in LTM, priming of related patterns through 

a mechanism of spreading activation (not unlike mechanisms in artificial neural 

networks), pattern-matching, and recall from LTM. This is the “cognitive 

processing” of Phaeaco, in which there is no tree-like search in a combinatorially 

growing space. Visual patterns, for example, grow to some extent due to the 

action of small pieces of code, called codelets, that act on patterns and compete 

against each other, vying for computing time. These characteristics have been 

borrowed from the Copycat family of architectures (Hofstadter, 1995a; Marshall, 



  Automation of BP-Solving 72

1999; Mitchell, 1993; Rehling, 2001) — of which Phaeaco is another member — 

and will be explained in more detail in §6.2. 

Thus, processing in Phaeaco occurs at two levels that interact with each other. 

The first, or “retinal”, level, is more akin to the processing of visual input in the 

retina and visual cortex, although it does not attempt to model those brain 

modules at the neurophysiological level. The second, or “cognitive”, level, comes 

closer to modeling human psychological processing, and is the level at which a 

scheme of conceptual representation is employed. The two levels interact and 

influence each other, working in parallel. The retinal level starts working first, 

since it processes the raw (pixel-based) visual input. The cognitive level begins as 

soon as possible, in a pipelined fashion, and can modify certain parameters that 

modulate the functioning of the retinal level. This top-down (cognitive-to-retinal) 

flow of information is limited, however; the bulk of information-flow occurs in 

the bottom-up direction (retinal-to-cognitive). 

 

 

“Mind” 

Neurons Bit-strings of memory 
General data structures 

Phaeaco’s retinal level 
Phaeaco’s cognitive level 

Neuronal columns 
Retina & visual cortex

Visual patterns 

Biological
Cognition 

“Programmed”
 Cognition 

Figure 4.9: Expectation of convergence between biological and “programmed” cognition 
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The reason for distinguishing between retinal (lower) and cognitive (higher) 

levels of organization is that biological and “programmed” cognition12 operate on 

different hardware components. The former uses neurons as its lowest-level 

hardware building blocks, and the latter uses bit-strings of memory (Figure 4.9). 

Some designers of cognitive systems (connectionists) simulate neurons through 

bit-strings. In Phaeaco, neurons are considered to be inappropriate targets of 

simulation. Instead, biological and programmed hardware components are seen as 

initially independent; but through successive levels of abstraction in each case, 

they take on almost identical functions. The similarity increases in proportion 

with the degree of abstraction. Eventually, it is hoped that at the highest level of 

abstraction, we reach what we experience as a “mind”. 

Thus, the answer to the question “What does Phaeaco model?” can be found 

by looking at the intersection of cognitive and programmed cognition in Figure 

4.9: Phaeaco models some fundamental cognitive processes, and the number of 

human-like cognitive behaviors is expected to be larger as we move higher up in 

the abstraction hierarchy toward a fully developed “mind” (the shared area in 

Figure 4.9 is larger at the cognitive than at the retinal level). 

 
12  The term “programmed cognition” refers to any attempt to implement models of human 
cognition in computers. The expression “artificial intelligence” is avoided here because the term 
“AI” has acquired distinctly engineering and even science-fiction connotations in recent years, 
distancing it from the goal of understanding how the mind works. 
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4.4 What should be the goal of automation? 

Given the earlier attempts at automating the BP-solving process, a question that 

naturally arises is, “How should one compare various approaches?” Since the 

question  involves comparisons of multidimensional systems, there can be no 

simple answer. The following subsections examine various dimensions of BP-

solving systems and the corresponding space and “metrics” that arise from them. 

4.4.1 Number of BP’s solved vs. degree of automation 
Is it correct to look exclusively at the number of BP’s solved by some system in 

order to form an opinion on how good, or satisfying, the approach is? It might 

seem that the answer to this question is subjective, and that it all depends on how 

one defines a “good” or “satisfying” approach. However, to make it clear that the 

idea of looking only at the number of BP’s solved (as a percentage of the original 

100, for example) is not a good metric of “goodness”, consider the following 

extreme case. 

Imagine a “program” that consists of an array of 100 strings, the n-th string of 

which contains the solution of the n-th BP (in plain English) in Bongard’s original 

collection. Given one of the 100 BP’s as input, the problem is first encoded as a 

number (by a human helper), and the number is then given to the “program”, 

which outputs the n-th string. 

What is wrong with this approach? An immediate concern is that it is not 

productive: it can solve only those BP’s that are already stored in its table. But an 

extension to this approach can have the human helper adding strings to the table 

as each new BP appears, and since it is up to this helper to decide a number given 
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the BP, every BP that has been seen at least once can be solved in any of its future 

appearances. 

Thus there is no problem with the productivity of this approach, but there is a 

problem with its automation. The problem is that the human helper, not the 

program, solves the BP. As an automation method, this would be absolutely 

unacceptable, but it serves to remind us that simply counting the BP’s solved is an 

unacceptable metric of the “goodness” of an approach. It may be of some use to 

consider the number of solved oblems, but the degree of automation 

(independence from human help) in ystem must also be considered. 
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since it is not known to have solved any of the 100 BP’s, but if it were depicted 

on the graph, its automation value would be comparable to Phaeaco’s. 

4.4.2 Agreement with data vs. interest in cognitive science 
At least two more dimensions of automated approaches are interesting. One is 

how closely the behavior of a system agrees with measurements of human 

behavior. Maksimov, for example, claimed a significant degree of agreement 

between his system and data collected from human subjects, although he did not 

quantify this agreement. But even a system having 100% agreement with human 

behavior is not necessarily cognitively interesting. An example of this case — not 

from the BP domain — is Deep Blue, the computer chess program that, in 1997, 

became the first program ever to defeat in a match the reigning world chess 

champion (Hsu, 2002). Though Deep Blue’s performance was such that it could 

possibly pass a chess-restricted “imitation game”,14 its approach for achieving its 

goal (which was simply to defeat the world chess champion) was to employ state-

of-the-art heuristics for searching and pruning the exponentially growing tree of 

chess moves, and even more to rely on very fast computing hardware. Thus, Deep 

Blue made no attempt to model any aspect of human cognition.15 From a 

cognitive science perspective, the only lesson learned from Deep Blue’s victory 

 
14  This is the term Turing used for what became known as “Turing Test”. Since the Turing Test is 
by its definition unrestricted, one might consider an “imitation game” restricted in the domain of 
chess, where a human judge tries to understand whether the chess-playing opponent is human. 
This is an excerpt from Hsu’s book: “Somehow, all the work caused Grandmaster Joel Benjamin 
[…] to say, ‘You know, sometimes Deep Blue plays chess.’ Joel could no longer distinguish with 
certainty Deep Blue’s moves from the moves played by the top Grandmasters.” (Hsu, 2002). 
15 Hsu writes in the preface of his book, “We approached the problem [of computer chess] from a 
different direction. We, or at least I, viewed the problem as a purely engineering one. […] Our 
project began with a simple goal, namely, to find out whether a massive increase in hardware 
speed would be sufficient to ‘solve’ the Computer Chess Problem.” (Hsu, 2002). 
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against the world chess champion was that there are alternative (non-cognitive) 

computational ways to emulate some aspects of cognition. 

If we were to construct a graph with two axes, “agreement with human 

behavior” vs. “cognitive interest”, and plot the locations of Phaeaco and Deep 

Blue, we would arguably obtain something like the graph in Figure 4.11. 
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Figure 4.11: Graph of agreement with human behavior vs. cognitive interest 

Note that the estimate of “agreement with human behavior” for Deep Blue in 

Figure 4.11 is based on expert opinion (Hsu, 2002, see also the footnotes on the 

previous page). Less sophisticated judges might express an even stronger 

conviction that there is human intelligence behind Deep Blue’s performance. 

In conclusion, just as examining a person’s ability in a single skill is usually 

considered inadequate as an assessment of a person’s overall intelligence, so a 

single measurement along any of the dimensions discussed above is inappropriate 

as an estimate of the success of a BP-solving approach. Nonetheless, analogously 

to the single value obtained by an IQ test for a person, one can envisage using 

some ordinary metric in a multi-dimensional space to compute a “distance from 

human” as a single-valued estimate of the “goodness” of an automated approach. 

 

 



  Automation of BP-Solving 

  

78

 



 

PART  II:  Phaeaco 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 79   



   

 
 

 80  



 

CHAPTER  FIVE 

Phaeaco in Action 
5 Phaeaco in Action 

Phaeaco’s external appearance and behavior when asked to solve BP’s is 

presented in this chapter. The captured images of the program show not merely 

Bongard problems but Phaeaco’s entire interface after some processing has 

occurred; in addition, the solution to the problem has been printed at the bottom 

of the screen. It should be noted that the resolution of the input that Phaeaco 

processes is exactly as shown in the various BP’s printed throughout chapters 1–

4, in which the individual pixels are easily discernible, and not as shown in the 

figures of the present chapter, in which the dimensions of BP’s are reduced to 

make room for the display of the program’s entire interface. 

5.1 What Phaeaco can do 

In the subsections that follow, the BP’s that Phaeaco’s current implementation can 

solve are grouped into categories, according to the deeper issues that the 

architecture must manage. The way these issues are handled is explained in 

subsequent chapters. This chapter provides a general preview only. 

5.1.1 Feature value distinction 
The solutions of an estimated 44% of all BP’s are based on distinguishing 

between the values that some feature has on the left and right sides. For example, 

 81   
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the feature could be the size (area) of an object, and the distinction between 

values could be “large vs. small” (as in BP #2). 

The problem that Phaeaco solves faster than any other is BP #3 (shown in full 

resolution in Figure 1.2), which has a solution based on a discrete-valued feature. 

 
Figure 5.1: Phaeaco’s appearance after having solved BP #3 

Figure 5.1 shows Phaeaco’s interface after having solved BP #3. The answer 

reached by the program is printed at the bottom of the left and right pages 

(“outlined texture” and “filled texture”). The time, in seconds, taken to solve this 

BP is shown at the rightmost corner of the display (“00:03”). Because such times 

are largely dependent on the speed of the computer, only relative evaluations of 
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them are meaningful. Phaeaco solved BP #3 on 98% of its attempts, as compared 

with 28 human subjects, all of whom solved the problem, with an average time of 

7.9 seconds and a standard deviation of 6.1 seconds. 

The marks on the vertices and along the sides of objects in Figure 5.1 are the 

result of animating the progress of some retinal-level processes, and will be 

explained in chapter 10. The number at the bottom-left corner of each box (“270”) 

is the value of an internal clock-cycle counter, roughly corresponding to the time 

spent looking at the box. Other features of this interface will be discussed later in 

this chapter (§5.2). 

In attempting to solve a BP, Phaeaco first goes through a “holistic stage”, 

during which all 12 boxes of the input are examined simultaneously, devoting 

equal time to each box. BP #3 is one of a few problems that Phaeaco manages to 

solve without going into the next, “analytic” stage, in which attention shifts to 

individual boxes. (The details of the functioning of the holistic and analytic stages 

are given in §11.1.) Phaeaco reaches the solution by forming two visual patterns 

(§1.2.3), one for each side of the problem, and contrasting the two patterns in 

search of differences. In the case of BP #3, the pattern on the left almost always 

has the value “outlined” assigned to its feature “texture”; similarly, the pattern on 

the right has almost always a “filled” texture. The algorithm that contrasts the two 

patterns spots this difference immediately (due to a built-in high significance of 

the percept of texture16), and this signals the end of the solution-seeking process. 

The formation of an overall pattern for each side of the BP out of individual 

patterns for each of the six boxes is discussed in §11.1.2. 

 
16 This property is inspired by, but does not simulate, the ability of the human brain to spot 
contrast in colors immediately through color-specializing area V4 of the visual cortex (Zeki, 
1993). 
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Figure 5.2: Phaeaco after having solved BP #2 

When the feature values come from a continuous range, as in the case of 

“area” in BP #2 (Figure 5.2), Phaeaco compares the statistics of the values on the 

left against the statistics of the values on the right. For example, in BP #2, the 

areas of the six figures on the left side form a sample of size six that has a mean 

and a standard deviation. This sample, which is part of the left-side pattern, is 

compared statistically with the corresponding sample of the right-side pattern. If, 

through the use of well-known statistical methods, the two statistics are found to 

differ significantly, this gives a “subcognitive hint” to Phaeaco that the solution 

might be based on different areas. Phaeaco then verifies this idea by quickly 
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looking at each box and confirming that each figure on the left is larger than the 

largest figure on the right. Other problems solved in this manner are BP #8 and 

BP #11 (see Appendix A). 

BP’s with solutions based on numerosity (§1.2.1, and §7.3) are also solved by 

Phaeaco. One of the most straightforward is shown in Figure 5.3. 

 
Figure 5.3: BP #23 as solved by Phaeaco 

BP #23 is simple enough to be solved by Phaeaco by contrasting the 

numerosity of objects between the left- and right-side patterns. Other problems, 

however, such as BP #85 (mentioned in §4.1; see Figure 4.3), are more subtle. 
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Figure 5.4: Difference in numerosity of lines in BP #85 

The pattern that Phaeaco constructs on the left side of BP #85 (Figure 5.4) is 

not precisely “three lines”. The reason is that only one box (I-A) depicts precisely 

three lines. Other boxes depict some structures (in particular, one of them is a 

triangle), and thus Phaeaco does not construct a pattern which is as simple as 

“three lines” for the left side, but rather one that can be described as “object with 

some lines”, for five of the boxes; a similar description can be made for the right 

side. The program must spend additional time looking at the boxes individually 

(this is the analytic stage, mentioned above) before hitting upon the idea of 

differing numerosity of lines. Luckily, due to the simplicity of the input, this idea 
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usually appears very soon; in fact, it fails to appear in only 6% of attempts, as 

shown in the performance statistics in Appendix A. Interestingly, 10% of the 

subjects (3 out of 30) that attempted to solve BP #85 also failed to solve it. 

5.1.2 Existence 
BP #1 (Figure 5.5) is probably the simplest BP regarding existence, solved by 

100% of human subjects and 100% of Phaeaco’s attempts. 

 
Figure 5.5: BP #1, the simplest problem of existence 

Phaeaco spends nearly no time at all looking at the empty boxes of the left 

side of BP #1, and constructs an overall pattern for the left side that contains 
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nothing but a “box”. The pattern of the right side, however, contains the notion 

“object”, together with its numerosity (approximately equal to the average 

number of objects in a right-side box). Comparing these two patterns, Phaeaco 

immediately identifies the existence of a representational element that stands for 

“object” in the right-side pattern, and its absence in the left-side pattern. 

Figure 5.6 shows BP #5, another problem solved by Phaeaco, the solution of 

which is based on the existence of curves (on the right side). 

 
Figure 5.6: Existence of curves on the right side of BP #5 
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5.1.3 Imaginary percepts 
Not all percepts that are necessary for the solution of BP’s are always present 

explicitly in the input. One such example is the percept of the “convex hull” of a 

figure, which is the central idea in the solution of BP #4. 

 
Figure 5.7: BP #4, “convex vs. concave” 

In BP #4 (Figure 5.7), the left-side figures have no indentations (they are 

“convex”), whereas the right-side figures have at least one indentation (they are 

“concave”). One way to detect the existence of indentations is to imagine an 

elastic band enclosing the figure tightly. The elastic band forms a convex shape, 

the “convex hull” of the figure. The “difference” between the convex hull and the 

actual figure (i.e., those points that belong to the convex hull but not to the figure) 

reveals precisely the indentations of the figure. 
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Phaeaco has the ability to “imagine” the convex hull of a figure, and then to 

consider what remains if the figure is “subtracted” from the convex hull. 

Although imagining the convex hull is one of Phaeaco’s “primitives” (in the sense 

that it does not depend on anything more fundamental), the operation itself is not 

performed immediately upon seeing a figure, nor is it at all certain that it will ever 

be performed. Perceiving the convex hull is a rather infrequent operation, and for 

this reason Phaeaco has a low success rate while attempting to solve BP #4 

(20%). The success rate for human subjects is slightly lower, only 16%. 

 
Figure 5.8: BP #4, as solved by Phaeaco 
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Note, however, that whenever close matches between Phaeaco and human 

subjects are reported, either in success rates or in relative response times, they are 

not meant to support the claim that human cognition is based on an architecture 

similar to that of Phaeaco’s. Instead, close matches should be seen exactly for 

what they are: indications of the presence of human-like behavior on the part of 

Phaeaco. 

Other perceptual elements that Phaeaco is in a position to “imagine” are 

straight-line segments and curves formed by the centers of small objects, and the 

interior of closed curves or polygons, which determine the solution of BP #15. 

 
Figure 5.9: BP #15, as solved by Phaeaco 
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Interestingly, in its attempt to solve BP #15 (Figure 5.9), Phaeaco “imagines” 

a circle in box II-C, where only an incomplete circle exists. Similarly, in box II-B 

Phaeaco makes a very good match of the figure with the known pattern of a 

triangle, after extending the incomplete side and finding that it meets the endpoint 

of another side, thus completing the triangle. In spite of being able to construct 

imaginary closed figures, such as circles and triangles, Phaeaco is not distracted 

by them, noticing the existence of true closed regions only on the left, and their 

lack on the right. 

5.1.4 Equality in a single box 

 
Figure 5.10: BP #56, as solved by Phaeaco 
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The solution of some BP’s is based on a relation among features of objects that 

holds within each single box; though the features might differ from box to box, 

the relation remains the same across all boxes of a given side. An example of such 

a problem is BP #56 (Figure 5.10), for which the solution is that all objects within 

each box on the left are of the same texture. The texture can be sometimes 

“filled”, sometimes “outlined”, but whatever it happens to be, it is the same for all 

objects in a given box. On the right this is never the case. 

This class of problems can be thought of as having solutions that are “one 

notch higher” in abstraction than all types of solutions we have seen so far. It is 

one idea to notice that “feature X of all objects in a box has the same specific 

value” (which can also be a legitimate BP), and another one to notice that “feature 

X of all objects in a box has the same value, whatever that is”. Though on the 

surface the difference appears to be a minor one, the representation that needs to 

be built for Phaeaco to arrive at the latter, more abstract description, is quite 

different from the much simpler representation that suffices for the former type of 

solutions, as we shall see in §7.4.10. 

Phaeaco does not solve BP #56 with ease, succeeding in only 20% of its 

attempts, failing to give an answer in another 64%, and giving a wrong answer in 

the remaining 16%. Human subjects, however, perform quite well on this 

problem, as seen in Figure 5.10: the percentage of successes is 71%, failures to 

answer are 16%, and wrong answers are 13%. This is a case where Phaeaco’s 

scores of success and failure deviate substantially from those of human subjects. 

In truth, Phaeaco’s 20% of successes can be improved substantially by some 

technical adjustments. Closer examination of Phaeaco’s behavior shows that the 

correct answer (“every object has similar texture”) is reached in many more 

attempts; but Phaeaco often fails to verify that it is true in all boxes on the left and 
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false in all boxes on the right. If even one of the 12 boxes does not pass the 

verification stage, the solution is rejected and a different one is sought. Phaeaco’s 

vision sometimes is not as acute as necessary to see precisely what there is in each 

box, all the time. Since the disagreement with human performance became 

evident only after the experiment with human subjects was administered, no a 

posteriori corrective action was taken to make Phaeaco’s performance match the 

human one better. 

 
Figure 5.11: BP #39, as solved by Phaeaco 

Figure 5.11, as well as Figure 5.12, shows problems of the “same kind” as BP 

#56. In BP #39 the feature that keeps approximately the same value across all 
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objects (line segments, in this case) in each box is slope; in BP #22, it is the area 

of objects (approximately equal, of course, since slope and area are continuous-

valued features). These two problems are landmark cases in Phaeaco’s 

development because their solutions were reached “for free”, i.e., after Phaeaco 

becoming sophisticated enough to solve BP #56, it could solve BP’s #39 and #22 

without a single line of code having to be added. 

 
Figure 5.12: BP #22, as solved by Phaeaco 

This is important, because ideally this situation should be repeated often. As 

the system becomes more robust, adding programming lines to deal with a 

specific problem should result in the solution of a number of other problems that 
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have solutions with similar characteristics. Eventually, a time should come when 

Phaeaco’s programmer adds the last line of code in the implementation, and 

Phaeaco becomes capable of solving every BP that is also solvable by humans. 

Could this ever be true? This is an interesting philosophical question. If it were 

not true, then there would always be some BP’s that are solvable by people but 

that lie forever beyond Phaeaco’s cognitive horizon. Unless we are willing to 

assume that the human mind possesses some “magic” property that can never be 

programmed, the answer to the previous question must be affirmative: a time 

must come when the last added piece of programming code endows Phaeaco with 

just as much fluidity, abstraction ability, and creativity in coming up with an 

answer as the best of human minds. 

Nonetheless, situations such as this one (i.e., an enhancement in Phaeaco’s 

architecture resulting in BP’s getting solved “for free”) must be exceedingly rare 

in Bongard’s collection of 100 problems. Certainly the case described above was 

the only one observed in the present implementation. The reason is that Bongard, 

being a good problem-designer, did not often repeat himself. He preferred to 

apply each abstract concept — such as “all objects have the same value for some 

feature” — in no more than two or three problems, frequently moving on to 

explore different ideas.17 Yet, no matter how creative a designer is, there must be 

an end to creative ideas that can be expressed in 12 black-and-white, 100×100 

boxes. Under these restrictions, the set of possible BP’s is vast, but finite. And 

experience in BP-design shows that with more than 300 BP’s collected from 

various sources,18 ideas do start being repeated. In a rough, educated guess, a set 

of 10,000 BP’s could include the ideas of all but the most creative designers. 

 
17  This is true to an even higher degree in Hofstadter’s collection of 56 BP’s. 
18  Mailed to the author by BP-enthusiasts through the internet. 
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5.1.5 Reading the small print 
All the previous subsections described successive architectural enhancements that 

were implemented in Phaeaco in order to cope with increasingly complex issues. 

This subsection describes a technical enhancement without which even some of 

the already presented BP’s would remain unsolvable. 

The enhancement pertains to Phaeaco’s visual perception of small objects. 

According to conventional wisdom in traditional image processing, if an object 

appears large (i.e., many pixels make up its image), it requires more processing, 

because there is more information that must be processed before a program can 

form an “opinion” on what it represents. This in turn entails more opportunities 

for a traditional program to be “lost in the details” of a large image, and arrive at 

the wrong conclusion. Smaller objects typically are easier to process. In Phaeaco, 

the opposite is true. Not all pixels of a large object need be explicitly processed, 

as will be explained in §10.3 before Phaeaco can “sense” what the object looks 

like (i.e., before it matches it to a known object). Thus, in Phaeaco, “smaller” 

rather than “larger” implies “harder to perceive”, because the coarseness of 

resolution at very small sizes yields ambiguities. Consider Figure 5.13. 

 
Figure 5.13: Left of arrow: two small objects. Right of arrow: their actual pixels magnified 
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Figure 5.13 shows on the left two small objects, a circle and a triangle, taken 

from the box of a BP. The right side of the same figure shows the magnified 

pixels of these two objects. While looking at the small objects, the human eye 

manages to fill in the missing pixels and to smooth the lines; as a result, the circle 

looks to us like a circle — it would not be confused with a polygon, for example. 

But when we look at the actual pixels on the right, we see what the program sees: 

the circle now could be construed as a polygon (a heptagon, perhaps), and the 

imperfections of the triangle appear exaggerated. If the two shapes were larger, 

the imperfections of their lines would average out; but at this resolution they 

could cause some confusion for the image-processing algorithms. 

For such objects, Phaeaco has the equivalent of a “magnifying glass”: a set of 

algorithms that magnify the objects by adding pixels appropriately, so that their 

imperfections are smoothed out. The following figure shows the result. 

 
Figure 5.14: Result of algorithmic magnification (b) and actual pixels (c) 

In Figure 5.14, the original small objects (a) are magnified and smoothed at 

the same time (b); the actual pixels of (b) are shown more clearly in (c). We see 

that now the pixels are more numerous than those of the objects in Figure 5.13, 

and the contours appear smoother not only to the human eye, but objectively (to 

the program). Any magnification size is possible by the algorithm that achieves 
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this result, as will be explained in detail in §10.3.17, but in practice a factor of two 

works well in most cases. In the same section, it will be explained that Phaeaco 

does not have a sharp but rather a probabilistic threshold for areas below which 

objects are considered “small”: there is a gray region of area values in which there 

is some probability that Phaeaco will apply the magnification algorithm. The 

chances diminish sharply for larger objects, and increase sharply for smaller ones. 

Figure 5.15 shows a problem in which applying the magnification algorithm is 

essential for Phaeaco’s success. Small objects on which the magnification 

algorithm has been applied are depicted enclosed in a faint gray circle. 

 
Figure 5.15: BP #21, as is usually solved by Phaeaco 
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The expected way to express the solution of this problem is: “There is at least 

one small object in each box on the left, whereas on the right there is never a 

small object.” Phaeaco indeed reaches this solution in its internal representation, 

but its way of expressing it linguistically is not very sophisticated. Thus, what we 

read on the left is “object has small area”, vs. “object has large area” on the right 

— a phrasing that can be confused with solutions to problems such as BP #2 

(Figure 5.2). Phaeaco notes that there is a contrast in areas among objects within 

the same box, for some box on the left side (this is true for five out of six boxes). 

This activates the notions “area”, “small”, and “large” (among others) in its LTM, 

which makes it easy to come up with the idea “Let’s see if there are small objects 

only on the left side”. (Equally probable is that Phaeaco will examine the idea 

“Let’s see if there are large objects only on the left side”, but rejects it as soon as 

it looks into a box on the right and sees the first large object.) After verifying the 

idea on both sides, it announces the solution mentioned above. Phaeaco arrives at 

this solution 34% of the time. 

Interestingly, in another 4% of its efforts, Phaeaco arrives at a different 

solution for BP #21, which Phaeaco’s designer was unaware of before the first 

time it was discovered: it prints the cryptic sentence “every object has a fixed 

area” on the right side, and nothing on the left (Figure 5.16). This was at first 

taken to be a spurious wrong answer. But upon closer examination it was 

understood that Phaeaco acts as follows. It is first attracted by the overall 

“uniformity” of areas of objects on the right side, in a holistic way. We get this 

holistic impression if we mentally remove the borders of the six boxes on the 

right, and see merely the objects spread over the right side of BP #21. At a low, 

retinal level, it is the statistical variance of the population of areas on the right 

that Phaeaco’s routines compute. But at a higher, cognitive level, Phaeaco does 
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not know about variance, but about the idea that these objects all look similar in 

terms of their areas; it also notices that the objects on the left do not look similar 

to each other. This leads Phaeaco to the notion that every object on the right has 

approximately the same specific area. If we were to compute the values of those 

areas, we would see them ranging between 500 and 600 pixels. Phaeaco does not 

have access to such numbers at its cognitive level, but it knows the areas are close 

to some fixed value (whatever that is); and that is what it announces as a solution. 

 
Figure 5.16: BP #21, as occasionally solved by Phaeaco 
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Human subjects’ success rate with BP #21 is different from Phaeaco’s: they 

succeed 65% of the time, give a wrong answer 29% of the time, and no answer 

6% of the time. 

This example underlines the importance of the separation of levels in 

Phaeaco’s architecture. Numbers such as statistical variance and the specific value 

of an area are dealt with at the lower, retinal level. The higher, cognitive level 

benefits from the calculability and existence of such numbers, but has no access to 

them. If Phaeaco were ever to become a conscious system, it would be able to talk 

about the rough uniformity of a feature without knowing that at a lower level it 

has computed the statistical variance of a sample. 

5.2 Phaeaco’s Mentor 

Besides the BP-solving division in Phaeaco’s interface, which was presented in all 

figures in §5.1, there is also the “Mentor division”, accessible through the vertical 

tab labeled “Mentor” (it appears on the right side of the book pages in all previous 

figures, and on the left side in Figure 5.17). In this part of the interface the person 

who interacts with Phaeaco (call this person “the mentor” for the purposes of this 

section) can teach Phaeaco visual patterns beyond those that appear in BP’s, and 

also to associate linguistic descriptions with percepts. 

As a demonstration of the usefulness — and the necessity — of including the 

Mentor division, consider again BP #6 (Figure 1.1). If the LTM lacks the concepts 

“triangle” and “quadrilateral” (as Phaeaco’s LTM in its initial configuration at 

start-up indeed does), then the only way to approximate the solution to this BP is 

by noticing the number of sides in each shape (three on the left, four on the right), 
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or even the number of vertices.19 But there must be some way to let the system 

know that, for example, “that kind of figure” is called a “triangle”. 

 
Figure 5.17: The Mentor section of Phaeaco’s interface 

This is precisely the purpose of the Mentor division. There is a large visual 

box on the left page, in which the mentor can draw anything at all. Note that 

although the “tools” of the tool-bar buttons (top of figure) allow only black-and-

                                                 
19  Interestingly, of the 26 subjects who solved this problem, only 10 used the concept “triangle”. 
“Three sides” was used 13 times, “three vertices” twice (expressed as “corners” or “points”), and 
one subject used the combination “3 points, 3 sides” vs. “4 points, 4 sides”. Only two subjects 
used the description “quadrangle” for the right side; of the rest, those who saw triangles on the 
left, saw either four-sided objects on the right, or “no triangles”. 
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white drawings, it is possible to open and load a true photograph stored in a file, 

and Phaeaco is able in principle to process that, too, in ways that will be explained 

in §10.1. Underneath the visual box, there is a “phrase box”, in which the mentor 

can type a phrase, preferably about the drawing in the visual box. Figure 5.18 

shows an example. 

 
Figure 5.18: A figure drawn and a phrase typed in Mentor’s boxes 

The phrase can be missing altogether, but if given, it is better that it is related 

to the contents of the visual box (unless the mentor intends to confuse Phaeaco, or 

force it to learn associations between percepts and words in some unexpected 

way). Next, the mentor can ask Phaeaco to process the input (drawing and/or 
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phrase), by clicking on the button showing a running figure, on the right pane. 

Phaeaco will take less than a second (in a typical computer) to look at the input, 

and will end up producing something similar to what is shown in Figure 5.19. 

 
Figure 5.19: Phaeaco’s markers of visual processing are superimposed over the drawing 

At this stage, Phaeaco has done the following: it has created an internal 

representation of the drawing, the nature of which will be explained in chapter 7; 

it has possibly updated or started creating the visual patterns of a circle and a 

parallelogram in LTM, in ways that will be explained in chapter 8; and if a phrase 

has been supplied, then Phaeaco has attempted to segment it into morphemes, and 

made some associations between the percepts of the drawing and the morphemes 
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of the phrase. The nature of the linguistic processing that must be undertaken by 

Phaeaco is entirely beyond the scope of the present text, and constitutes a system 

that rivals in complexity Phaeaco’s visual architecture. However, the linguistic 

system is not complete yet; it is a work in progress that will be described in future 

publications. At present, suffice it to say that Phaeaco can learn the correct 

associations between words and percepts after being supplied with several 

examples that repeatedly make use of the same words (but in different phrases) in 

the presence of the same percepts. For example, after the previous sample pair of 

[image, phrase], another pair might show a triangle inside a circle, and the phrase 

might be: “Now a triangle is inside a circle”. 

The mentor can add pages to the Mentor division, placing each [image, 

phrase] pair on a separate page, thus constructing a “lesson”, i.e., a sequence of 

such pairs. Lessons can be saved and re-learned (replayed) at a later time, which 

allows the mentor to control the order and quantity of concepts learned by 

Phaeaco before attempting to solve various BP’s. (For example, the mentor might 

want to teach the concepts “triangle” and “quadrilateral” before letting Phaeaco 

look at BP #6.) 

The effectiveness of the algorithm that allows Phaeaco to learn associations 

between words and percepts has been empirically verified, but its correctness has 

not yet been formally proven, so its introduction must await future publications. 

5.3 Summary 

Some of the BP’s that Phaeaco can solve were presented, and their properties 

were discussed, along with other features of the interface of the program. The 

next chapter introduces the foundations of Phaeaco’s architecture. 



 

CHAPTER  SIX 

Foundational Concepts 
6 Foundational Concepts 

The following sections offer an exposition of the foundational background on 

conceptual representation, paving the way for Phaeaco’s architectural 

organization (to be discussed in next chapter) and explaining its position within 

this theoretical background. The “classical”, “prototype”, and “exemplar” theories 

of concepts are discussed, followed by the Fluid Analogies Research Group 

(FARG) ideas about how concepts should be represented. FARG principles are 

directly incorporated in Phaeaco’s architecture, whose approach to the 

representation of concepts can be seen as an amalgam of the prototype and 

exemplar theories (in spite of their alleged conflict). 

6.1 Theories of concepts 

6.1.1 The classical theory of concepts 
“What are concepts?” is a question that was first asked at least 2,300 years ago. 

Early answers given by the Greeks are not considered satisfactory today, but they 

must be mentioned in any discussion of conceptual theories: we must absorb the 

mistakes of the past to avoid them in the future. 

Though Plato is famous for advancing the view of a realm of abstract and pure 

ideas that exists separately from ordinary perception (the “Theory of Forms”), and 

for his insistence on definitions in many of his dialogues — most notably in 

 107   
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Sophist (Plato, 1992) — it was Aristotle who first took up the question of what a 

category, or concept,20 is. According to Aristotle, a category is what it is because 

it possesses a set of defining characteristics (Aristotle, 1992). For every category 

there is an essence that makes it “what it is to be” (τό τί ƒν εqναι). Essences are 

definitions21 that are based on a number of elementary categories. Aristotle 

specified ten such elementary categories, which are akin to conceptual primitives 

in modern theories of conceptual representation, and he gave examples for each. 

Table 6.1 lists Aristotle’s elementary categories (Frede, 1981). 

 

Elementary category 
(conceptual primitive) Description Aristotle’s examples 
Substance (οšσία, 

τόδε τι, 
τί dστί) 

substance 
“this” 
what-it-is 

human, horse 
Socrates 
“Socrates is a human” 

Quantity (ποσόν) how much four-foot, five-foot 
Quality (ποιόν) what sort white, literate 
Relation (πρός τί) related to what double, half, greater 
Location (πο™) where in the Lyceum, at the marketplace 
Time (πότε) when yesterday, last year 
Position (κεsσθαι) being situated lies, sits 
Habit (hχειν) habit, possession is shod, is armed 
Action (ποιεsν) doing cuts, burns 
Passion (πάσχειν) undergoing is cut, is burned 

Table 6.1: Aristotle’s elementary categories 

Moreover, Aristotelian definitions are not concerned with individuals but 

rather species (εqδος, one of the words Plato uses for “Form”) that have essences. 

A species is defined by giving its genus (γένος) and its differentia (διαφορά). The 

genus is a larger set in which the species belongs, and the differentia is what 

                                                 
20  The words “category” and “concept” will be used interchangeably in this chapter. 
21  Aristotle himself traced the quest for definitions back to Socrates. 
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distinguishes the species from other members of the same genus. Thus, a “human” 

might be defined as “an animal (the genus) having the capacity to reason (the 

differentia)”. 

Although Platonic and Aristotelian definitions and the theory of essences were 

held as immutable and authoritative theories of human cognition for well over two 

millennia, challenges to them began already with their contemporaries.22 Most 

notable among those with critical attitudes were the Stoic philosophers, though 

very few of their writings have survived. 

What is more important than philosophical objections, however, is the fact 

that the classical theory of concepts does not withstand experimental evidence 

that argues against it. A fundamental claim of the classical theory is that a 

definition sharply separates those items that belong to the defined concept from 

those that do not. A study by J. A. Hampton, asking subjects to rate items on 

whether they belonged to certain categories, showed that, after computing the 

statistical averages over all subjects, some items were just barely considered 

category members, while other items were just barely excluded (Hampton, 1979). 

For example, tomatoes were just barely excluded from “vegetables”, while 

seaweed was just barely included. Similarly, sinks were just barely included as 

members of the category “kitchen utensil”, while sponges were just barely 

excluded. Seven out of eight categories investigated displayed continuity between 

purported members and non-members, rather than a sharp division among items. 

It might be objected that although statistical averages present a continuum, 

individual people have a very clear idea of which items belong to which category. 

But an earlier study (McCloskey and Glucksberg, 1978) showed that people can 

 
22  Diogenes Laertius (3rd C. AD) recounts one such anecdotal objection: the Cynic philosopher 
Diogenes of Sinope (4th C. BCE), upon hearing Plato’s definition of “human” as a featherless, 
bipedal animal, plucked a chicken and announced, “Here is Plato’s human.” (Diogenes, 1992) 
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change their mind about category membership in ambiguous cases when asked to 

repeat their judgment after a period of only two weeks. 

The objection to the existence of crisp boundaries between members and non-

members is closely related to the issue of typicality among category members. For 

example, although dolphins and bats are mammals, they are rarely among the first 

ones people recall when asked to produce a list of mammals (Barsalou, 1987; 

Rosch, 1975). Moreover, response times for deciding whether such atypical items 

belong to a category or not are longer than for the more typical members (Murphy 

and Brownell, 1985; Rips, Shoben et al., 1973). In addition to being unable to 

explain the effects of typicality, the classical theory is plagued with other 

problems. For example, it predicts that the subset relation among categories 

should be transitive: if horses are a kind of mammal, and mammals are a kind of 

animal, then horses are a kind of animal. In reality, however, human cognition 

does not always work in a mathematically describable way. One experiment, for 

instance, found that subjects regarded chairs as furniture, and car seats as chairs, 

but usually denied that car seats are furniture (Hampton, 1982). 

To address problems such as the ones mentioned above, researchers have 

proposed ways to mend the classical theory. One such way is to distinguish 

between core and identification procedures (Miller and Johnson-Laird, 1976). 

The core procedures (not to be confused with the term “conceptual core” as used 

by FARG, to be introduced in §6.2) are still definition-like mechanisms (which 

remain elusive, since no one has said exactly what they are). In addition, however, 

there is supplementary information that people store with each concept that serves 

to identify instances of the concept. Thus, although having fur is not a definitional 

(core) property of the concept “mammal” (humans have no fur, and there are 

some furry insects), most mammals have fur, and an animal with fur is quite 
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likely a mammal. A number of such characteristic features aid concept 

identification, according to this view. 

Nonetheless, such remedies to the classical theory are problematic. If only the 

identification procedures can be examined experimentally, what then is the role of 

the core ones? What is the purpose of insisting on definitions if an objective way 

cannot be established to render definitions unassailable, except possibly in 

contrived23 cases? After all, changing the classical theory so that it acquires 

features of its rivals and looks more like them would undermine the reason for 

keeping it as a possibility. 

6.1.2 The prototype theory of concepts 
Strong objections to the classical theory and its inability to explain experimental 

results led to the development of the prototype theory of concepts, largely 

associated with Eleanor Rosch (Rosch, 1973; Rosch, 1975; Rosch, 1977; Rosch, 

1978; Rosch and Mervis, 1975), which was soon followed by the exemplar theory 

(to be discussed in §6.1.3). According to a review by G. L. Murphy (Murphy, 

2002), the prototype theory was at first misinterpreted, taken to mean that the 

prototype of a category is the “best example” of all members of the category. 

Thus, the category “bird” would be represented by the best, or the most typical 

example of a bird. It could be a robin for North Americans, a sparrow for 

Europeans, etc. This, however, was a deviation from the original proposal, but it 

persisted, partly because Rosch did not explicitly rule it out in her seminal 

publications. 

 
23  “Even number” has been proposed as a concept with which people are faster in deciding that 4 
is a more typical even number than, say, 7356, but may use the well-known definition to decide 
correctly with 100% accuracy if given sufficient time (Armstrong, Gleitman et al., 1983). 
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According to the prototype theory a concept is represented by a set (or list) of 

features, some of which are assigned greater weights than others. The more often 

a feature appears in the category and does not appear in other categories the 

higher its weight is. For example, in the category “bird” the feature “has feathers” 

will be assigned a very high weight, but the features “has wings” and “has beak” 

will be given lower weights, because there are other entities that have wings or 

beaks but are not birds. In addition, features with high variability (e.g., “bird 

color”) will have low weight, because they are only mildly informative. But what 

is the value of a seemingly discrete but utterly unspecifiable feature such as “bird 

color”? (What is the color of a parrot of the kind Ara macao, a bird that includes 

all hues of the rainbow on its head, body, and tail feathers?) 

Features with a continuous range present an additional problem: how are 

continuous values to be stored? For example, what is the length of a bird? One 

possibility is to discretize the range (e.g., small, medium, and large), although this 

introduces an element of arbitrariness. Another possibility is to store the exact 

value from a continuous range (e.g., 27 cm), but then how can two values be 

compared to determine whether they are close enough? This results inevitably in 

another arbitrary decision. Early proposals, such as storing the average value if 

the variability of the feature were small (e.g., “length of robin”), but not if it were 

large (e.g., “length of bird”) (Strauss, 1979), were not widely used or accepted. 

Another significant problem is the categorization of new items. Specifically, 

given an item and a category, how do we decide whether the item should be a 

member? Here there seems to be some consensus, assuming at least that both the 

item and the category prototype come equipped with a feature list. The algorithm 

gives points for every common feature among the two lists according to the 

weight of the feature, and subtracts points for every feature of the item that is not 
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in the list of the prototype, and for every prototype feature that is not in the 

feature list of the item (Smith and Osherson, 1984; Tversky, 1977). If the total 

value thus computed exceeds a fixed threshold (called the categorization 

criterion), then the item is judged to be a member of the category. Problems with 

this approach include the arbitrariness of the categorization criterion, and what to 

do with unknown feature values: does a given bird seen frontally have no tail, or 

is its tail hidden by its body? Is a feature with an unknown value subtracted from 

the total sum, or simply ignored? 

The feature list of a prototype has been criticized as an unstructured, and thus 

uninformative, data structure (Smith and Osherson, 1984). A bird, for example, is 

not simply a collection of parts, such as two legs, a head, a body, two eyes, a tail, 

and a beak, all in a disorganized list. Each part bears a certain relation to other 

parts: putting the eyes on the body will make a rather poor example of a bird. To 

rectify this representational weakness, the idea of schemata was introduced 

(Markman, 1999; Rumelhart and Ortony, 1977; Smith and Osherson, 1984). A 

schema divides up the features of an item into dimensions, also known as “slots”, 

and values on those dimensions (“fillers”). Slots are typed: a slot of type “color”, 

for example, cannot receive a value of type “length”. Values can be mutually 

exclusive: an eagle cannot be both female and male. There can be restrictions on 

values (up to two eyes is fine for a bird, but three or more is not a possibility), and 

in some cases values can restrict other values (a bird with wings too short for its 

body size cannot possibly have the feature “can fly”). Finally, and more 

important, relations can be explicitly stored in slots: the eyes of a prototypical bird 

are expected to be above the beak, the head is smaller than the body, etc. 

Now consider how the prototype theory addresses the objections raised 

against the classical theory of concepts. 
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• In the prototype theory there is no need for a defining characteristic, since 

the computed sum total of a number of characteristics with weights is 

compared against a threshold value. This rectifies the inability of the 

classical theory to find a single defining characteristic (a definition). 

• The observed continuity in membership (the lack of a sharp divide 

between members and non-members) is explained by the corresponding 

continuity of the computed sum total that determines membership. 

• Borderline membership cases are explained as items that receive 

approximately equal scores when tested against two different and rival 

categories (e.g., a tomato as either fruit or vegetable). 

• The observation that people often change their minds on borderline cases 

of category membership can be explained by hypothesizing that people 

use slightly different weights each time, or a different threshold, or even 

slightly different features. 

• Typical items are identified as members more quickly because they 

contain the most highly weighted features, so they receive high scores. 

This rests on the assumption that it is easier to discern a difference 

between two numbers (when comparing the score against the threshold) 

when the difference is large than when it is small (§7.3). 

• Finally, intransitivity can also be explained, to some extent, by the 

prototype theory. For example, car seats are kinds of chairs by virtue of 

one set of features (which includes “can be used for sitting”), but chairs 

are a kind of furniture by virtue of another set of features (which includes 

“is located in a room”). Car seats are therefore not a kind of furniture 

because the two feature lists do not match sufficiently (Tversky, 1977). 
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6.1.3 The exemplar theory of concepts 
Shortly after the prototype theory of concepts was first proposed, an alternative 

proposal was made, in which the claim was that what is stored in memory is not a 

summary representation, but a collection of the individual examples that belong to 

the category (Medin and Schaffer, 1978). This proposal, termed “the exemplar 

theory of concepts”, appeared to be radically different and counterintuitive: the 

concept “dog”, for example, in a person’s mind consists of a few hundred dogs 

the person has seen, some more salient than others. 

This immediately raises the issue of how category assignment is made. For 

example, how do we decide that a flying object that just perched on a branch of a 

tree in the Eastern United States is a member of the category “goldfinch”? 

According to the exemplar theory, the input is compared with all concepts stored 

in memory. The comparison is performed in parallel, hence the result is known 

practically immediately. The input will thus activate most strongly the stored 

examples of goldfinches (assuming we already have such examples stored in 

memory), because those are most similar to the given input. It will also activate, 

but to a lesser degree, examples of orioles, chickadees, warblers, robins, canaries, 

and possibly several other similar-looking birds, depending on the observer’s 

prior knowledge. The activation of each of these examples also depends on their 

salience: a goldfinch is more similar to a canary than it is to a robin, but canaries 

would be rather low in salience, since they do not normally fly and perch in places 

where goldfinches do. The input will also activate, probably in decreasing order 

of strength, examples of sparrows, cardinals, pigeons, chickens, ostriches, 

chameleons, and so on. Eventually, examples of goldfinches, if most highly 

activated, will result in accessing the concept “goldfinch” consciously, whereas 

all other concepts will be primed only subconsciously. Nonetheless, clever 
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psychological experiments reveal that even such unlikely concepts as “ostrich” 

and “chameleon” can still receive more activation than other concepts, such as 

“cathedral” and “democracy”, that share no features with “goldfinch”. 

Evidently, there must be a mechanism for comparing the input to stored 

examples, resulting in a value of similarity. Medin and Schaffer proposed a 

multiplicative rule, according to which each pair of compared features results in a 

value in the range between 0 and 1, but never exactly 0, and these values are 

multiplied together, resulting in a final similarity value. Each such value is 

weighted, however, with a weight that brings the value closer to 1 if the feature is 

insignificant, thus diminishing its effect. For example, in comparing two trees for 

similarity, it is more important to notice the difference in the shape of their leaves 

than the difference in their heights, since the feature “leaf shape” is more 

characteristic of the type of tree than the variable height feature. Thus, the tree-

height difference will be multiplied by a weight that will bring it close to 1, 

effectively neutralizing it. 

This gives a procedure for computing the similarity between two items. But 

how do we compare the input to an entire set of examples in a category? Medin 

and Schaffer suggested that the similarity scores of the input against each example 

in memory must be summed up. Thus, if the input is a goldfinch and there are 100 

examples of cardinals stored in memory, the 100 similarities of the input to each 

of the cardinals must be added to yield a final similarity value of the input to the 

category “cardinal”. Even if there are only very few stored examples of 

goldfinches, their high similarity value will suffice to categorize the input as 

“goldfinch”, because the cardinals, though many, will differ considerably from 

the input item, and hence their overall similarity will yield a lower value. If 

several categories turn out to be similar to the input, each category will be 
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selected with a probability that is proportional to the amount of similarity it has 

relative to the others (Nosofsky, 1984). 

Though counterintuitive, the exemplar theory answers satisfactorily — at least 

according to its proponents — the issues raised by the prototype theory in 

questioning the validity of the classical theory. Specifically, the answers to 

objections are as follows: 

• The problem of defining characteristics vanishes in the exemplar theory, 

since there are no definitions, but only comparisons between examples. 

• Typicality is easily explained: the most typical items are the ones that are 

similar to many category members. 

• Borderline cases are explained as items that are almost equally similar to 

category members and category non-members. 

• Typical items are categorized faster than atypical ones: it is easier to find 

evidence that they are members, since they are similar to a larger number 

of category members (Lamberts, 1995; Nosofsky and Palmeri, 1997). 

• Intransitivity is explained in a way similar to that of the prototype theory: 

a car seat is similar to many examples of chairs one has seen before; a 

chair is similar to examples of furniture in many aspects; but car seats are 

not as similar to examples of furniture in as many aspects. 

For all the experimental support it has received, some aspects of the exemplar 

theory remain unsatisfactory. As the previous discussion suggests, the theory tells 

us how to proceed once some examples are “stored” and a new input arrives. But 

how are the examples stored? The prototype theory makes specific, if crude, 

suggestions: a list of features, a structured schema, etc. Exemplar theorists have 

left the question of representation blurred and unanswered (Murphy, 2002). What 
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exactly is stored when, for example, we see a sparrow? Is it the visual image of a 

specific vantage point taken from a particular angle, a collection of such images, 

or an entire “motion picture” that includes the sparrow as it turns and pecks on the 

ground? What if we receive only a fleeting view of the sparrow, or if we see it 

through the window of a moving car — does it still count as an example, and, if 

so, how salient an example is it? If we have seen thousands of sparrows in our 

lives, do they all count as examples? If it makes some sense to claim that the 

category “dog” is formed by all the specific examples of dogs we have seen 

(because dog-kinds can be quite different from each other, and we can imagine 

storing them separately), how much sense does it make to claim that the category 

“ant” is formed by all the examples of ants we have seen? How can objects as 

indistinguishable as two ants be stored separately? And how can the mind cope 

with the amount of information it receives if it stores separately every input object 

it ever perceives? There have been various attempts at answering these questions, 

but no overall consensus has yet emerged. 

6.1.4 The Generalized Context Model 
Over the years, some cognitive psychologists have developed a more 

sophisticated set of formulas for computing the similarity of two exemplars than 

the initial multiplicative rule suggested by Medin and Schaffer. These formulas, 

collectively known as the Generalized Context Model (GCM), are empirical in 

that they have been tested experimentally and are known to be accurate within 

statistical error (Kruschke, 1992; Nosofsky, 1992; Nosofsky and Palmeri, 1997). 

Although the GCM has been employed primarily by exemplar theorists, there is 

no reason why it should not be employed by alternative representational 

approaches. Indeed, Phaeaco employs the GCM, explained in detail below. 

Notwithstanding its grand title, the GCM consists of three simple formulas. 
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First, the following formula gives the psychological distance dij between two 

exemplars i and  j that can be compared along features xi1,…, xin, and xj1,…, xjn. 

r
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Equation 6.1: Distance evaluation in GCM 

The wk are weights that depend on the “context”; in other words, these 

weights determine the importance of each feature xk. In Phaeaco, each wk can be 

in the range from 0 to 1, and r equals 1 (which turns Equation 6.1 into an n-

dimensional weighted “Manhattan distance” — see §8.2.1 and §8.2.3). 

Next, the similarity sij between exemplars i and  j is given by the formula: 

ijdc
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Equation 6.2: Similarity evaluation in GCM 

Thus, the greater the distance dij, the smaller the similarity sij. Regarding the 

parameter c, a high value results in paying attention only to very close similarity, 

and a low value has the opposite effect. Equation 6.2 is also employed by Phaeaco 

(§8.2.5). 

For the sake of completeness, it should be mentioned that the GCM uses a 

third formula that calculates the probability P(J | i) that exemplar i will be placed 

into category J: 
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Equation 6.3: Membership probability in GCM 
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K ranges over all possible categories. Phaeaco does not use Equation 6.3, but a 

different statistical computation, to be explained in chapter 8. 

Does the human brain implement the three GCM equations in a literal way, by 

evaluating summations and exponentials? In principle, such functions are within 

the capabilities of neuronal processing, as is known in the area of natural 

computation. It is also possible, however, that the above formulas are emergent 

results of deeper underlying mechanisms. As an analogy, planets move along 

nearly perfect elliptic orbits not because they solve differential equations, but 

because such orbits are emergent properties of gravitational fields: they are 3-D 

projections of “straight lines” (geodesics) in curved 4-D space-time. Like Kepler 

in the 17th century, psychologists offer no deeper justification for Equations 6.1–

6.3 than agreement with experimental evidence. 

6.1.5 Controversy over the correctness of the two theories 
Ever since the appearance of the prototype and exemplar theories as heirs to the 

more or less obsolete classical view, theorists of each of the two new views 

assumed an antagonistic attitude toward each other. After all, the two theories 

appear to be totally at odds regarding the explanation for how concepts are 

formed: the prototype theory supports a summary representation disregarding the 

specifics, while the exemplar view proposes storing only the specifics. If one 

theory is right, the other has to be wrong. Countless papers have been published 

supporting one view, and thereby attacking, at least implicitly, the other. The 

pattern is that an author performs some experiment, and interprets the results to 

favor one view. Some time later a new publication appears from the “enemy 

camp” offering an alternative interpretation of the original results that supports 

the opposite theory. Consequently, each camp withdraws more deeply into its 

trenches, and the possibility of a reconciling synthesis becomes ever more remote. 
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In spite of the ongoing controversy, the approach taken in Phaeaco adopts a 

middle ground. But how can there be middle ground between two theories so 

seemingly contradictory of one another? To answer this question, we should note 

the fact that it is very difficult — if not downright impossible — to distinguish 

experimentally among the two opposing theories. Consider the analogy suggested 

by the following figure. 

 
Figure 6.1: Abstraction of the prototype (left) and exemplar (right) representations 

The drawing on the left side of Figure 6.1 is an abstract representation of a 

way the prototype theory could represent categories: through a statistic that 

includes a mean value and a variance.24 The drawing is two-dimensional, hence 

this category contains only two dimensions (features). In general, however, the 

drawing should be imagined in n dimensions. There is a core (dark area) around 

the mean value, where most members of the category exist, and a halo of 

progressively25 lighter regions, corresponding to areas where fewer members 

exist. In short, this is merely a schematic representation of a Gaussian in two 

                                                 
24  Note that some prototype theorists consider mean values, but generally not variances. 
25  The shades are supposed to vary smoothly, but the printing of the figure discretizes the range. 
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dimensions. On the right side of Figure 6.1, the exact same category is depicted, 

but this time through the individual members (dots) that belong to it. It is not hard 

to see that most questions that can be answered by the first representation can also 

be answered by the second, and vice versa. In particular, the mean and variance 

can be calculated from the individual members in the exemplar case, so the 

second representation subsumes the first.26 But the prototype representation can 

also answer most questions, such as, “What is the probability of finding a member 

at a given distance from the center?” or, “What is the expected number of 

members up to a given distance away from the center?” The only questions that 

are unanswerable by the prototype representation are those that concern individual 

examples. 

As was mentioned at the beginning of this chapter, Phaeaco employs an 

amalgam of the two paradigms. Phaeaco’s representations are primarily 

prototype-like, with a core and a halo, as will be explained in more detail in 

chapter 8. But they also include some individual examples, particularly those that 

appeared earliest in the formation of the category. This means that the first 

examples of a category are remembered explicitly, at least for a while, during 

which time they form a statistic (with a mean, a variance, and a few more 

important parameters). As the statistic becomes more robust, the probability of 

storing individual examples diminishes. Eventually, no more examples are stored, 

but the statistic is updated with each new example that is encountered. The 

following figure gives an abstract depiction of this idea. 

 
26  Naturally so, since the exemplar view is a “lossless” representation in the simplified drawing of 

(although in reality, exemplar theorists do include effects of memory loss due to 
forgetting). On the other hand, the prototype representation is “compressed”. 
Figure 6.1 
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Figure 6.2: Abstraction of Phaeaco’s conceptual representation 

The justification for this approach is that, although memorization of individual 

examples cannot be denied, particularly when such examples represent a new 

concept or idea, Phaeaco has no alternative to compressing its representations 

sooner or later, because as a non-distributed system it does not have the luxury of 

employing a scheme in which successive inputs are all maintained independently. 

In addition, since Phaeaco is implemented and run on processors that are not 

inherently parallel, it does not have the luxury of running through a large number 

of explicitly stored cases in order to compute statistical summaries when needed. 

All this is ultimately a consequence of the difference in the underlying hardware 

between biological and programmed architectures of cognition, as already 

discussed in §4.3, and illustrated in Figure 4.9. 

6.2 The FARG principles of conceptual representation 

At around the same time the first papers appeared proposing the prototype and 

exemplar views, Douglas R. Hofstadter was working on GEB (1979) (see §1.1). 

In chapter XIX of GEB, immediately after the introduction of BP’s, Hofstadter 
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Each node in the network of Figure 6.3 represents a concept, or, more 

precisely, the core of a concept (a notion that will be explained later). Thus, the 

node labeled “triangle” represents not a specific triangle that was seen at any 

particular time, but the core of the abstract (“Platonic”) concept “triangle”. The 

concept network is part of the long-term memory of a cognitive system. 

Some nodes are linked to other nodes with a directed link. For example, 

“square” is linked to “line segment” with a link that points to the latter. At some 

point along the length of this link there is a black dot, from which another directed 

link starts and points to the node “composed of”. Figure 6.4 extracts and shows 

this portion of the network. 

 

composed 
of

line 
segment

square

Figure 6.4: An even smaller portion of the network of Figure 6.3 

In such cases nodes like “square” can be seen as subjects of a sentence, of 

which “composed of” is part of the verb, and “line segment” is the object. The 

entire sentence reads, “a square is composed of line segments”. Many such 

sentences can be inferred from the small network of Figure 6.3: “a circle is a 

closed curve”; “a square is a polygon”; “a closed curve has interior as a feature”; 

and so on. (It should be noted that a simple linguistic component that produces 

such sentences given similar representations is included in Phaeaco.) 
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Other nodes are linked together through a bi-directional link; for example, 

nodes “low” and “down”, which are “similar”, as shown in Figure 6.5. In such 

cases the concepts are symmetrically related, and the sentence can be constructed 

in either direction: “low is similar to down”, and “down is similar to low”; or 

even, “low and down are similar”. 

 

low down

similar

Figure 6.5: A bi-directional link denoting a symmetric relation 

Other interesting features of the concept network in Figure 6.3 include some 

degree of self-reference (“similar and opposite are opposites”), and representation 

of higher-order relations (“the opposites right–left and high–low are similar”). 

In GEB, Hofstadter hinted at how these conceptual relations could facilitate 

the solution of BP’s by an automated system. In particular, he introduced the 

important notion of a conceptual slippage between concepts that are sufficiently 

close in the network. For example, consider BP #24 (Figure 6.6). Suppose that, in 

solving this problem, at some point we reach the idea that on the right side there 

are many shapes with line segments. Unfortunately “shapes with line segments” is 

not enough for reaching the solution, because there are many such shapes on the 

left side, too. But the concept “line segment” is close to “curve” in the concept 

network, because the two are “opposites”. A momentary look on the left side of 

BP #24 is enough to let us identify not simply curves, but circles, and the 

concepts “curve” and “circle” are also close to each other in the network (“a circle 

is composed of a curve”). Thus, the initial idea of line segments slipped into the 
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neighboring idea of curves, and then to circles, the existence of which is the 

solution of BP #24. 

 
Figure 6.6: BP #24, one of many where a slippage facilitates its solution 

These ideas were developed further by Hofstadter and the Fluid Analogies 

Research Group (FARG), and explained in Fluid Concepts and Creative 

Analogies (henceforth FCCA) (Hofstadter, 1995a). An outline of pp. 211–224 

from FCCA follows, since the described architectural principles of the Copycat 

program have largely been adopted in Phaeaco, too. 

6.2.1 Copycat and its Slipnet 
Copycat was a project conceived by Hofstadter, and as an implemented program 

it formed the focus of Melanie Mitchell’s Ph.D. thesis (Mitchell, 1990; Mitchell, 

1993). It was developed further in a second Ph.D. thesis under the name of 

Metacat (Marshall, 1999). The object in Copycat (and Metacat) is to discover 
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analogies in a letter-string domain. The following is a typical problem of this 

type. 

Suppose the string abc were changed to abd; how would the string 

ijk be changed in “the same way”? 

Though seemingly simple, problems in this domain can be surprisingly subtle. For 

example, the above problem admits several answers: 

• ijl: the most natural answer, replacing k by its successor l, just as c was 

replaced by its successor d. 

• ijd: rigidly replacing the rightmost letter by d. 

• ijk: rigidly replacing all c’s by d’s. 

• abd: replacing the whole string without regard to its internal structure by 

abd. 

A wealth of other, much more interesting letter-analogy problems led to the 

development of Copycat’s architecture, which was characterized by fluidity in the 

way various ideas about relations among letters and groups of letters were tested, 

rejected, re-formulated by slipping into related ones, tested again, and so on. One 

key component of Copycat’s architecture was the Slipnet, a network of Platonic 

concepts similar to the one shown in Figure 6.3, but this time employing concepts 

from the domain of letter-string analogies. 

A fundamental idea in FARG’s Slipnet is that each node can be activated 

when the corresponding concept in the input is encountered. Activation is a 

continuous quantity that can spread from a node to neighboring nodes, and in like 

manner to further ones, but at each jump from one node to another it loses some 

of its vigor, until — after typically a very small number of jumps — it reaches no 
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further. Consequently, the conceptual core of a concept is defined as the node 

from which activation starts spreading to neighboring nodes. All affected 

neighboring nodes belong to the halo of the concept. This implies that a concept 

in Slipnet is not a single node, but an entire — not sharply delineated — 

collection of nodes, one of which serves as its core. 

An additional attribute of the Slipnet makes the behavior of concepts and their 

activations even more attractive. The links that connect nodes with each other are 

not passive and featureless “cables” that merely pass activations along. Each link 

has a label, which is itself a concept in the network (as shown in Figure 6.4, for 

example). When the label of a link receives activation, the link can be imagined as 

“shrinking” in a manner determined by the degree of activation value. The notion 

of “shrinking” is only a visual analogy, and is illustrated in Figure 6.7. 

 

node 1 node 1node 2 node 2 

“label” node node “label”

BEFORE  ACTIVATION AFTER  ACTIVATION 

Figure 6.7: Illustration of figurative “shrinking” of a link due to activation of its “label” 

As a result of this “shrinking”, two nodes that are connected with each other 

through such a shortened link can be thought of as “coming together”, which 

makes it easier for activation to pass from either one to the other (from “node 1” 

to “node 2” in Figure 6.7). 

For a more concrete example, suppose “interior” is connected with “exterior” 

by an “opposite” link, as in Figure 6.3. Suppose also that “opposite” receives 
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some activation. Then the nodes “interior” and “exterior” come closer to each 

other, and their greater proximity makes it easier to slip from the notion of 

“interior” to that of “exterior”, and vice versa. At the same time, it becomes easier 

to slip between all sorts of opposite concepts, such as “high” and “low”, or “up” 

and “down”, or “similar” and “opposite”, etc. Thus, the Slipnet resembles a 

rubbery structure that shrinks, bends, or is otherwise distorted. 

Activations of nodes do not last forever. They fade over time, but the speed 

with which they fade depends on another parameter of each concept, its 

conceptual depth. The greater the depth of a concept, the more slowly its 

activation fades. Conceptual depth correlates, but does not coincide, with the 

abstractness of the concept. For example, “similar” is conceptually deeper than 

“to the left of ”, and “polygon” is deeper than “triangle”. The reason for the 

correlation of conceptual depth with the tendency to retain activation is that 

abstract ideas are remembered best, whereas surface-level, specific memories are 

easily forgotten. 

6.2.2 The Workspace 
If the Slipnet corresponds to the long-term memory of human (or animal) 

cognition, the Workspace corresponds to its short-term memory. According to 

Hofstadter, the Workspace resembles a busy construction site,27 in which all sorts 

of structures are continually being built and partially destroyed, to make room for 

new, possibly larger, stronger, more complex ones. The construction takes place 

independently at many places, and initially there are only disconnected and very 

 
27  The visual analogy here is that of “the cytoplasm of a cell, in which enzymes carrying out 
diverse tasks all throughout the cell’s cytoplasm are the construction crews, and the structures 
built up are all sorts of hierarchically-structured biomolecules.” (Hofstadter, 1995a). 
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simple structures. Over time,28 however, these simple structures are connected to 

form larger ones. The initial low-level, bottom-up parallelism is gradually 

replaced by a higher-level, top-down, focused elaboration of only those structures 

that appear to be the most salient. 

How is an object’s salience determined? It is a function of two other factors: 

the object’s importance and its unhappiness. The importance depends on how 

highly activated the nodes that belong to the structure are; and the unhappiness is 

greater if the object is poorly integrated with other objects. To illustrate, consider 

a chessboard with pieces in the middle of a game. Some pieces are more 

important than others, by virtue of participating in the player’s most promising 

plans. But the player’s attention is also diverted from time to time to those pieces 

that wait “unhappily” away from the action, precisely because they seem 

abandoned, and the player wonders whether they could be utilized in some other 

important plans.29 

6.2.3 Coderack, codelets, and temperature 
If structures are built in the Workspace, what is it that builds them? What is the 

equivalent of a team of workers that expand the edifice by adding parts to it? 

The team of workers is implemented by the Coderack and its codelets. But the 

worker-analogy is not completely accurate, since the activities of construction 

workers generally proceed according to a centrally designed plan (the architect’s 

blueprint), and because real workers usually build solely by construction, rather 

than by demolition. None of these properties is true in a FARG architecture. 

 
28  But note that this time interval, in a cognitive system functioning in real time, might last only 
fractions of a second. 
29  Interestingly, Alexandre Linhares is currently involved in the design of precisely this kind of 
chess-playing architecture that employs most of FARG’s principles (Linhares, 2005). 
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Specifically, there is no pre-designed plan that must be followed. If any “plan” 

can be discerned after some amount of activity, it is an emergent one, an 

epiphenomenon for which no specific prior decision was taken. 

The codelets are tiny procedural blocks (they can be thought of as very short 

pieces of programming code) that wait on the Coderack. The latter is a structure 

that serves only for accessing and selecting the next codelet to run. Each codelet 

has an urgency, which is a number determining how likely the codelet is to be 

selected probabilistically from the Coderack: the higher the urgency, the better the 

chances are for the codelet to be selected. A codelet’s urgency is assigned by its 

creator as a function of the estimated promise of the task the codelet will work on. 

Once selected, a codelet performs single-mindedly the only task it “knows” how 

to perform and then it dies. Though codelets are usually implemented in serial 

computers, thus allowing only a single one of them to act at any moment, their 

probabilistic selection from the Coderack and their very short life span makes 

their collective behavior appear as if large numbers of them acted independently 

and in parallel. 

There are bottom-up and top-down codelets. The former act directly on 

structures in the Workspace without any prior information about what should 

exist there. Top-down codelets, in contrast, carry out actions on Workspace 

structures with an eye to creating specific types of higher-level structures. Before 

a codelet dies and is removed from the Coderack, it can manufacture follow-up 

codelets, which, like all codelets, are placed on the Coderack and wait there until 

selected to run. 

In Copycat there is another architectural component that is not implemented in 

Phaeaco’s architecture. It is the temperature of the system. The temperature is a 

measure of disorder in the Workspace. The system starts at high temperature (low 



6.2 The FARG principles of conceptual representation 

 

133

order), at a stage in which hardly any structure has been built, and therefore most 

codelets are of the bottom-up kind. As time goes by, however, structures are 

created, and the temperature of the system drops (order increases). The notion of 

temperature is important in Copycat because its value provides a measure of how 

much the system “likes” an answer. By its nature, Copycat’s domain allows a 

number of different answers to be given to each problem, with some answers 

being more “desirable” than others, and much of the system’s creativity and 

similarity to human cognition rests on its sense of which answers are more 

felicitous than others. In contrast, the BP domain does not lend itself to the same 

cognitive pressure: BP’s usually have a single answer, and if some shapes admit 

multiple descriptions, Phaeaco manages to reach them without having an explicit 

measure of their desirability. Naturally, the omission of temperature from 

Phaeaco’s present implementation is not being trumpeted as an advantageous 

feature; it simply seems that at this stage it is not critically needed. If the 

architecture of Phaeaco were to be applied to a domain such as letter-string 

analogies, temperature would have to be added to it. 
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CHAPTER  SEVEN 

Workspace Representations 
7 Workspace Representations 

An implementation of the ideas of conceptual representation discussed in the 

previous chapter is given in the present one. In addition, properties that pertain 

solely to Phaeaco’s representations are explained. The discussion starts with the 

way the representation of a very simple visual object (a Λ-like shape) forms in the 

Workspace (§6.2.2) — namely, the formation of a graph-like structure of 

interconnected nodes. It continues by examining the activation that each node 

possesses, which is an essential element of Phaeaco’s representations. One of the 

representational elements, numerosity, is examined in some detail because of its 

importance both to human cognition in general and to BP’s in particular. The rest 

of the chapter discusses the types of representational elements used in Phaeaco in 

its current implementation. 

7.1 Formation of Workspace representations 

The formation of representations of the visual input in the Workspace, which is 

explained in this section, assumes an LTM that contains only some “hardwired” 

(preprogrammed) primitives, including such Platonic notions as “point”, “line 

segment”, etc. The simplifying assumption that more complex concepts (such as 

“triangle”) are initially absent from the LTM implies that structures are formed in 

the Workspace with no top-down pressures, built by codelets with no expectations 

about what should exist in the input. More complex issues of contextual 
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influences on the formation of representations in the Workspace are discussed in 

the next chapter. 

Suppose the following Λ-like shape is given in a single box of a BP, as shown 

in Figure 7.1. (Initially, only a very simple figure like this is considered, because 

the depiction of the representation of any more complex figure would exceed the 

space available on a single page.) An explanation of the lower-level image 

processing that occurs in Phaeaco’s “retinal level” (a term introduced in §4.3) is 

postponed until chapter 10. At present, we assume that some initial processing 

takes place at the pixel level, which in some way gives rise to the higher 

“cognitive” structures that will be introduced in the present chapter. 

 
Figure 7.1: A simple input figure (from BP #30) 

The representations that Phaeaco builds when asked to process the same input 

at different times are not necessarily identical. But if the input is as simple and 

decontextualized as the one shown in Figure 7.1, then the representations will 

always be nearly identical. In general, however, the more complex the input and 

the contextual pressures, the higher the probability that some variance will exist in 

the internal representations of multiple views of the same input. This is the case 

because the processes that build up the representational structure are probabilistic 

at a very low level (even at the pixel level, as will be explained in the chapter 10). 

Thus, the points, line segments, and curves that constitute the figure will be 

perceived in different orders on different runs. Though this different perceptual 
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order does not result in a dramatic difference in the structural frame30 of the 

representation, it might have some effect on the details of the representation, 

especially in view of the fact that Phaeaco does not allocate an “infinite” amount 

of time to discover every possible detail that there is in the input. For example, in 

the input of Figure 7.1, the two lines have approximately equal lengths, the angle 

they form is nearly 60°, and the overall center of the figure (its “barycenter”) is 

close to the center of the box. All these are details that Phaeaco might or might 

not include in the representation at different runs. Therefore, the description of the 

representation of the example in Figure 7.1 that follows cannot be called the 

representation that Phaeaco will construct, but merely a possible representation 

(though a fairly complete one). It is also important to show how the representation 

is constructed in various stages, rather than simply to display its final form. 

The image-processing functions that work at the retinal level are quick to 

identify pieces of straight lines and to inform the cognitive level of their 

discoveries. Whereas the numerical details of such discoveries (e.g., lengths of 

lines, slopes, widths, etc.) remain a property of the retinal level, the cognitive 

level constructs nodes, which are abstractions of corresponding retinal-level 

details. For example, at the retinal level a straight-line segment can be represented 

by an equation of the form y = a·x + b, where a and b are specific constants, plus a 

number of other computed values, including the starting and ending point of the 

line segment. The cognitive level, in contrast, learns simply that “there is a line 

segment”. All the numerical details are inaccessible at the cognitive level, which 

thus constructs a node representing the knowledge that “there is a line segment”. 

Figure 7.2 shows not only this node, but also one that represents the visual box, 

 
30  This term is used here informally. The structural frame of the shape in  for example, 
can be described as “two line segments that meet at a point”.  Overall, the representation contains 
much more information than just the structural frame, as will become evident in what follows. 

Figure 7.1,
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since every visual input is enclosed in a b eaco, which thus becomes part 

of the representation. 

 
Figure 7.2: An incipient represent
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Shortly after constructing the first link, the retinal level discovers not only the 

second line segment, but also the fact that the two line segments both belong to a 

single connected component, which will here be called an object.31 Informed 

about this, the cognitive level creates a node that denotes precisely the existence 

of an object that contains the two line segments. But in order to do so, it must 

reconfigure the structure of Figure 7.2, because it is now known that the 

previously identified line segment is not simply a part of the box, but part of an 

object, which in turn is part of the box. Thus, an object-node must be inserted 

between the box-node and the λ-node. Figure 7.3 shows not only the object-node 

inserted, but al  the second line segment as part of the same obje t. 

object
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Up to this point, all nodes at the cognitive level have been created because the 

retinal level “said to do so”. In other words, there was strictly bottom-up 

processing of information, with the retinal level dictating what must be 

constructed at the cognitive level. The construction of each cognitive node, 

however, entails the creation of a number of codelets (§6.2.3) in the Workspace, 

each specific to the type of the introduced node. For example, each λ-node will 

add to the coderack six codelets, “wanting” to represent the slope of the line 

segment, and also its length, width, extremities (endpoints), and midpoint, as well 

as a count of how many line segments there are in this object (or whatever larger 

component contains this line segment, in general). Naturally, the urgencies of 

such codelets vary widely. Slope and length codelets, which have very high 

urgencies, are selected from the coderack almost immediately.32 The line-

counting codelet has a medium urgency, while the width, extremity, and midpoint 

codelets have very low urgencies, so they only have a decent chance to be 

selected and to work if there are contextual pressures, i.e., if concepts such as 

“line width”, “middle”, or “line end” have been primed in LTM. In the absence of 

such contextual pressures, it is almost certain that the activity in the Workspace 

will come to an end before these codelets are ever selected. (Soon it will be 

explained what causes the activity in the Workspace to cease.) 

Another important issue, before the activity of some codelets is exhibited, 

concerns the origin of codelets. Who decides how many codelets a line segment 

gives rise to, and of what type? Why does a line segment create exactly the six 

types of codelets listed above? If this is a predetermined, “hardwired” decision,33 

 
32  An architectural decision reminiscent of (and inspired by) neurons acting as slope and length 
detectors in area V1 of the visual cortex of the brain. 
33  A “hardwired” decision is one that is determined rigidly by specific lines of programming code. 
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what if in the future a new (hence, overlooked) feature of the concept “line 

segment” were discovered, necessitating a new type of codelet to work on it? 

The answer is that in Phaeaco the decision of which codelets to build, given a 

representational node (e.g., a λ-node), is not simply hardwired. For example, the 

particular Platonic node that stands for the concept “line segment” in LTM is 

linked to a number of other concepts, such as “slope”, “length”, “width”, 

“extremity”, “middle”, and “numerosity”. Given a λ-node, Phaeaco goes to the 

Platonic node “line segment” in LTM and creates codelets corresponding to all 

Platonic nodes (“slope”, “length”, etc.) that are linked to “line segment” according 

to a particular type of link. These linkages are of course pre-manufactured, so in a 

sense they are hardwired. But nothing prevents the system from creating a new 

linkage in the future after learning something new about line segments. Phaeaco’s 

LTM is both hardwired (non-empty at startup) and expandable (new concepts and 

linkages can be added as the system processes information). Thus the answer to 

the question of the rigidity of codelet types is that Phaeaco’s ability to “learn” 

(i.e., expand and modify its LTM) is responsible for adding future behaviors that 

were not inherent in its initial programming code. 

This pertains to a deeper issue that deserves a brief additional comment. A 

common misconception among lay people, and even among computer scientists 

who do not work in AI or cognitive science, is that “computers can do only what 

they have been programmed to do”. By implication, computers will remain 

eternally dumb, unable to demonstrate the flexibility and creativity of intelligent 

human minds. Indeed, for programs that include only their lines of programming 

code, this is trivially true. But a program such as Phaeaco includes its memory as 

well, which is permanently modifiable by what Phaeaco “sees”. In principle, what 

Phaeaco “sees” cannot be predetermined, since it might process pixels that arrive 
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through a camera foc sed on the external world. Thus, Phaeaco’s LT , and by 

extension its behavio  abstractly reflects the history of its transactio  with its 

environment. The un redictability of the latter implies tha Phaeaco’ behavior 

cannot be considered tirely preprogrammed. 

 
Figure 7.4: The representation as it looks after the work of some codelets
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is no particular reason for selecting these features (slope, length, and a λ-counter) 

to show in Figure 7.4; a more or less random sample of them was selected, just as 

the system selects and runs the corresponding codelets randomly. 

The nodes for slope and length, shown in Figure 7.4, are of a type called 

feature nodes. The characteristic of such nodes is that the programming structure 

that implements them includes not simply a number (for the angle of the slope, or 

for the length), but a small set of statistics, defined as in Table 7.1: 

Field  Description 

N number of observations 

mean average value of sample data 

var variance of sample data 

sum_sqr sum of squares of sample data 

min minimum value of sample data 

max maximum value of sample data 

Table 7.1: Programming structure for the statistics of a feature 

The reason for maintaining a set of statistics as opposed to a single number for 

a feature node is not apparent at this early stage in the representational buildup. It 

looks as if a single observation made by a single codelet should result in a single 

number. Although this is true, Phaeaco does not make single observations but 

repeated ones, even on the same input (the details of this mechanism will be 

explained in §11.1.3). Thus the structure of a feature node must accommodate a 

set of statistics, instead of just one single number. The advantage of employing 

statistics will be explained in the context of pattern formation (§8.3). 

Slopes and lengths are examples of continuously varying features. There are 

also discrete-valued features, to be discussed soon. 
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The λ-node on the right of Figure 7.4 is connected to a different type of node, 

called a numerosity node (marked by the symbol “1 λ” in the figure). T e concept 

of numerosity (§1.2.  §5.1.1) is a familiar one in psychology and cognitive 

science, and a large n mber of books and dissertations have been devo d to it. A 

brief overview of num rosity in general, as well as a detai  descripti n of how 

Phaeaco deals with it, s given in a later section (§7.3). Her  suffices  say that 

although a numerosit node is not the same as a feature n , it share  with the 

latter the characteristi  of being described by a set of statis s (Table 7 1), rather 

than by a single value

  

 
Figure 7.5: Further enrichment of representation: texture, vertex, and updated λ-nu
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In Figure 7.5, more nodes and connections have been added to the 

representation. First, there is a texture node, linked directly from the object node. 

This is one of the feature nodes, and was added because a codelet ran that 

“wanted” to examine the “texture” of the object. (This codelet was put on the 

coderack by the codelet that created the object node, but only now was it selected 

to run.) A texture is a discrete-valued feature in the domain of BP’s. Objects in 

BP’s are usually either outlined or filled. These are the only two values that a 

node of this type can represent. Naturally, the texture of an object can be a much 

richer notion than simply “outlined” or “filled”, as BP’s #196 (Figure 2.12), #97 

(Figure 2.7), and #180 (Figure 1.15) clearly demonstrate. In such complex cases 

the texture cannot be represented by a simple value but requires an entire 

representational sub-tree that would be described, for example, as “parallel lines 

slanted at 45°, narrowly spaced” (see box I-D of BP #97, Figure 2.7, for an 

example). The texture nodes presented here make no attempt to encompass such 

complex notions. 

The texture of the Λ-shaped object examined here is perceived as “outlined”. 

But a question immediately arises: How thick can a line be before it is perceived 

as possessing an identifiable shape, and therefore no longer as a line but as a filled 

object of that shape? Figure 7.6, below, illustrates this point. 

 
Figure 7.6: Line segments or filled objects? 

Assuming there is no contextual pressure, Phaeaco’s retinal level has a 

probabilistic threshold of “thickness” (concentration of black pixels) beyond 

which it perceives a thick line as a filled object. This threshold has been manually 
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fine-tuned so that it corresponds approximately to the threshold beyond which the 

human eye also tends to see a filled object, rather than a line, from a reasonable 

distance.35 Under contextual pressure, however, the value of this threshold can be 

pushed up or down, which is an example of how higher-level contextual pressures 

can cause a change in the functioning of the lower-level retinal procedures.  

There is another issue concerning the statistics of discrete features. All feature 

nodes, as mentioned earlier, have a set of statistics as given in Table 7.1. But if a 

feature can take on discrete values only, what sense does it make to compute a set 

of statistics? Is it necessary to store an average, a variance, etc., for a binary 

feature such as texture? The answer is that when a single object is considered, 

naturally the value of its texture is either “outlined” or “filled”. But when a 

pattern is formed, as will be explained in §8.3, several objects of different 

textures might be matched together to form an object of “average” texture. 

Internally, Phaeaco assigns the value 0 to “outlined”, and 1 to “filled”, so an 

average texture might have the value 0.75. This is not devoid of meaning; it is as 

meaningful as the statement that the average family of a given population has 2.15 

children. These ideas will become clearer in chapter 8. For now we simply note 

that statistics on discrete features are useful in general. 

A second addition to the representation in Figure 7.5 is the vertex node, which 

is shown at the bottom of the figure and has the label “ V ”. Note that both λ-nodes 

are linked to it with a two-way connection. Such nodes are not the result of 

codelet activity, but of further processing at the retinal level. 

 
35  The total length of a thick line might also play a role in whether the human eye perceives a line 
or a filled object, as the rightmost examples of suggest. For small objects, Phaeaco uses 
a magnification algorithm that attempts to replicate a close-up view. If the object is too tiny, 
Phaeaco cannot compete with the human eye, and will perceive a “dot” instead, i.e., a point with a 
certain size (more about dots and points in §10.3.10). 

Figure 7.6 
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Finally, a third odification of the representation in Figure 7.5 i the updating 

of the λ-numerosi  node, which now is linked with h λ-node and has the 

la el “2 λ”. The n w connection was created when the elet that as assigned 

th  task of countin  the leftmost λ-node was selected an  n. The c elet located 

th  already existin  λ-numerosity node in the structure ( abeled “1 λ” in Figure 

7. ), updated it, an  linked it with the λ-node. 

 
Figure 7.7: A new line slope, object numerosity, and updated line len
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represents the line-segment length is now linked with both λ-nodes. This is 

because the two line segments have approximately the same length. The word 

“approximately” here means the following. At the retinal level, two quite accurate 

numbers have been computed as lengths of the two line segments. At the 

cognitive level, however, there is a threshold imilarity for lengths beyond 

which two lengths are treated as exactly equal.  threshold has b en manually 

set so that, in the bsence of contextual pressure  treats as equal hose lengths 

that the human ey  would probably not distingu As in the case o  line widths, 

however, the con xt might modify the value o is t shold. Fo  example, if 

there is sufficient  great pressure to see a trian as i o celes, bu its two sides 

(other than its bas  are not exactly equal, lower he eshold of cceptance of 

length equality wi  allow the two nearly equal si to b reated as qual. 

 
Figure 7.8: Convex hull added 
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Figure 7.8 shows a single added node representing the convex hull of the 

shape. The convex hull of a set of points can be defined geometrically in more 

than one way. For example, 

• it can be the smallest closed figure that includes all points, such that the 

tangent to any point on its perimeter does not intersect the figure; or, 

• it can be the smallest closed figure that includes all points, such that if we 

choose any point in its interior and draw a straight line in any direction, the 

line will intersect the perimeter of the figure at exactly one point. 

Here we do not need to use either of the above definitions, however, nor are 

they necessary for Phaeaco. An algorithm for constructing the convex hull of a set 

of points that starts with three points and proceeds incrementally with additional 

points is given in §10.3.18. An easy way to visualize the convex hull is by 

imagining the shape that a tight rubber band would take if stretched so as to 

include all points. 

 
Figure 7.9: Convex hull of a set of points 

How immediate is the perception of the convex hull in our cognition? Do 

people immediately recognize it and perform cognitive manipulations on it, or is 

it something seldom noticed? As the experimental data in Appendix A show, the 

answer is probably somewhere in the middle. Of the 31 subjects asked to solve 

BP #4, which involves the notion of “existence of depressions”, 17 did not answer 
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at all, nine gave a wrong answer, and only five (or about 16%) answered 

correctly. One might argue that using the idea “existence of depressions” is not 

the same as “seeing” the convex hull itself. There is also BP #12 (Figure 7.10), 

however, in which the perception of convex hulls is probably involved more 

directly. On the left side, figures are clearly elongated; on the right side, most 

figures are not elongated, except one, in box II-C. That figure can be seen as “not 

elongated” only if the convex hull around it is perceived. To reach the solution, 

one must therefore perceive the convex hull around all other figures. Of the 30 

subjects asked, 21 supplied no answer, two gave a wrong answer, and seven (or 

about 23%) answered correctly. 

 
Figure 7.10: The figure in box II-C of BP #12 is not elongated only by perceiving its convex hull 

These results suggest that the convex hull is a percept that people are capable 

of perceiving, albeit not easily. Accordingly, Phaeaco is not very eager to “see” it, 
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Figure 7.11 shows one more imaginary percept: the barycenter, or center of 

gravity of the object. This is the point on the plane where the object would 

balance if it were a physical object and each of its pixels had the same mass. This 

point seems to be relatively easy to perceive, as the data on BP #8 suggest. 

 
Figure 7.12: BP #8, solved by noticing the placement of barycenters within the boxes 

BP #8 (Figure 7.12) was solved by 24 out of 31 subjects (around 77%), 

whereas the other seven subjects did not provide an answer (see Appendix A). 

If barycenters are somewhat easy to see in isolation, perceiving them becomes 

compelling if the objects are lined up in some fashion, as BP #84 indicates 

(Figure 7.13). This problem was solved by 100% of the subjects (31 out of 31), 

and in a relatively short time (average 13 sec). The lined-up objects in BP #84 are 

very small circles, and we group them together (separating them from the 

somewhat larger square in each box) because they are so similar (more on this 
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mechanism in chapter 8). When a group with a number of objects is perceived, 

one of the things that Phaeaco does is to abstract the objects with their barycenter, 

which leads it to perceive the shape formed by their barycenters (§10.3.15). 

  
Figure 7.13: BP #84, where objects are lined up forming larger shapes 

Another question is whether it is the barycenter of the object itself that is 

perceived, or the barycenter of its convex hull. Consider the object in Figure 7.14. 

 
Figure 7.14: Barycenter of object (A), and barycenter of convex hull (B) 

A
B

Figure 7.14 shows a rather extreme case where the barycenters of the object 

(A) and its convex hull (B) are widely separated. The object consists of a heavy 
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Figure 7.15. Although the object consists of merely two line segments, the area of 

the convex hull gives a rough idea about how large an object these lines make. 

This concludes the quick tour of representation-building, based on the 

example of the Λ-shaped object of Figure 7.1. As was mentioned earlier, a 

representation might not include all of the nodes shown in Figure 7.15, or it might 

include a few more (such as the angle between the two lines as a feature of the 

vertex, the coordinates of the vertex and/or the free end-points of the two lines, 

and so on). What is represented at any given look at the input is probabilistic. 

However, the probabilities are not completely random, but biased. For example, it 

is impossible for Phaeaco to fail to represent the two line segments, or the fact 

that they meet each other and form an object. But as we proceed deeper into the 

structure of Figure 7.15 (starting from the box-node at the top and proceeding to 

further linked nodes), the possibility exists that some of the less important leaves 

in this structure will not be built into it. In a different look at the input, however, 

such leaves might be included, and others omitted. The importance of the various 

representational elements is determined by the urgency of the codelets. 

At this point the reader might expect a precise list of codelets generated by 

each type of representational node. However, this level of detail will not be 

provided, because the exact number, quality, and urgencies of generated codelets 

per node type is not what makes the system work. Different implementations 

might cause different codelets to be put on the coderack, selecting and running 

them at various times due to their varied urgencies. The important proposal here is 

that the general outline of representation-building be followed, as described in this 

and subsequent chapters. For the same reason, not even a precise listing of all 

visual primitives is absolutely crucial, though all those that Phaeaco’s current 

implementation uses will be discussed in §7.4. 
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7.2 Activation of nodes and monitoring activity 

A detail that was glossed over in §7.1 was the issue of termination of the 

representation-building activity. How were the codelets “persuaded” to cease 

building further elements in the structure, thereby avoiding the perception of 

details36 the human eye almost never sees? One might assume that all generated 

codelets were eventually given their chance to run, and when the coderack was 

left empty, activity ended. This cannot be the case, however, because, as was 

mentioned in the paragraphs immediately following Figure 7.3, each λ-node 

automatically places on the coderack six codelets, one of which “wants” to 

measure the width of the line segment, another that “wants” to represent the 

midpoint, and so on. Why were those codelets not selected? Even if their 

urgencies were very low, when they were left as the only choices on the coderack 

they should have been given a chance to run. An explanation is in order for how 

the building activity might end while the coderack is still not empty. 

The answer to this question involves an additional element of the structure of 

a node, which might seem insignificant at this point but will later play an 

important role in the description of the properties of the LTM. The additional 

element contained in each node is called activation, and is implemented as a real 

number in the interval (0, 1).37 Activations can be increased in discrete steps by 

small “injections”, as we shall see, and they decrease gradually and automatically 

also in discrete steps, as time goes by. Before specifying the exact parameters that 

 
36  Examples of such details would be the bisector of the angle, the slope of that bisector, the mid-
points of the two line segments, the line that connects those mid-points, the line that connects the 
two endpoints — thus completing the triangle — and many more. 
37  The parentheses (as opposed to brackets) are intentional, and mean that the two end-values of 
the interval, 0 and 1, are excluded as possible values of an activation, as we shall soon see. 
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control changes in value f an activation, let us see how activa s are use  in the 

build-up of a representat n. 
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reading of the λ-node appears to be slightly lower than that of the newly 

introduced slope-node in the figure, because some time has passed since the 

introduction of the λ-node into the structure (a time at which its activation started 

at its highest value), and, as was mentioned earlier, activations drop gradually as 

time goes by, if nothing else happens to them. Naturally, the newly introduced 

slope-node gave a small upward push to the activation of the λ-node, but this was 

not enough to cause the latter to reach its maximum value. Similarly, the gauges 

of all other ancestor nodes are shown with their readings progressively lower as 

we move toward the root of the structure, reflecting the earlier times at which they 

were introduced.38 This remark does not imply that the activation of a node will 

never reach high readings again. Often it happens that there is a flurry of activity 

in descendant nodes that, collectively, pushes the activation of a parent node to its 

maximum, only to have it gradually drop again later, due to the passage of time. 

All this leads to an explanation for how the activity in the workspace can end 

while still having codelets waiting in the coderack. What does the trick is the 

activation of the root-node of the representation — the box-node in this case.39 

When the activation of the root-node drops below a threshold (a minimum value 

close to 0, also to be explained soon), the representation is considered complete, 

and the input considered “seen” to Phaeaco’s satisfaction at this stage, forcing all 

further codelet-instigated processing in the visual box to cease. 

A description of the mechanism according to which activations increase and 

decrease is now given. The reader should keep in mind that the same mechanism 

is used in various other components of the architecture: in “strengths” of links, 

 
38  This orderly progression is not necessary. In §7.1 a λ-node was introduced before its parent 
object-node. Nonetheless, attempts to convey the general idea. 
39  A box-node is not the only candidate for a root-node of a representation. The node for a BP 
side, for instance, contains six boxes, and the node for an entire BP contains two side-nodes. 

 Figure 7.16 
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and in the activation a ignificance” of LTM nodes, all to be explained in later 

chapters. 

The main element n activation structure is its value, a real number in the 

open interval (0, 1), de d on the y-axis of the graph in Figure 7.17. 
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decreases accordingly. The time unit required for this to happen is another 

parameter of the activation structure. 

Why must the shape of f be a sigmoid? Would other shapes work as well? 

First, observe that a strictly monotonically increasing function that starts at 0 and 

ends at 1 is needed, so that, given the abstract signal “intensify activation”, f (x) 

will actually increase, not decrease. Second, there only are a few possibilities of 

simple curves with these constraints — and the reasoning for a complex curve 

would be hard to justify. Figure 7.18 presents three such possibilities. 
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Figure 7.18: Three alternative possibilities for a monotonically increasing function f  

The leftmost function (Figure 7.18 A) has an initial fast-rising part, and a final 

slow one as it approaches 1. The rapid initial rise in this function is inappropriate. 

An activation implements in an abstract way the idea “let’s see if there is 

something interesting here”, or “let’s pay attention40 to this”, where “this” can be 

a node, an input box, a concept, a whole side of a BP, etc. — let us use “idea” in 

this discussion to refer to anything that can be activated. If the initial part of the 

activation function increased as rapidly as in function A, the system would pay 

much attention to this idea on only the tiniest suggestion that it is significant. 

 
40  This is a sub-cognitive “attention”, not to be confused with the conscious focus of attention. 
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However, the opposite should in fact happen: the system should be conservative 

in incrementing activations at the outset, when evidence of importance is still 

insufficient, so as to be able later (when enough evidence arrives) to separate the 

more important ideas from noise. Function A would allow most of the “chaff ” to 

pass as “wheat”. 

The rightmost function C, on the other hand, has a different kind of problem. 

If we want to allow activations to drop gradually and naturally, as time goes by, 

function C is problematic because it cannot hold onto any highly activated idea at 

all. As soon as a short time elapses, activation drops dramatically. The opposite is 

needed: if an idea has been identified as interesting, hence highly activated, the 

system should be able to hold onto it for a while; perhaps more evidence will soon 

arrive and confirm its importance. 

Finally, function B was supplied only for the purpose of completeness. It is a 

“bland” function that acts neither conservatively to suppress noise, nor prudently 

to retain important ideas. In conclusion, the most felicitous function must be one 

that has the shape of a sigmoid. 

The previous abstract description might not seem to make sense in the context 

of node activations of working memory representations. But the concept of 

activation is highly versatile and pervasive in Phaeaco’s architecture, and since it 

is introduced in this subsection it is explained in all its details here, even though 

its full force will become evident only in the context of the discussion of LTM. 

At this point the reader might infer that function f must be explicitly defined 

somehow in the structure of an activation. This would be a rather straightforward 

implementation. We could, for example, define f (x) as some form of an 

arctangent function, f (x) = arctan (a·x + b) + c, which has the shape of a sigmoid. 

We could specify the parameters a, b, and c, so that f passes through points (0, 0) 
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and (1, 1), and has its point of inflection at (½, ½), as in Figure 7.17. However, 

sometimes the most general and straightforward solutions prove disastrous in the 

implementation of a complex system. Phaeaco is a highly parallel system that 

would benefit greatly if implemented in a computer with a true parallel design. At 

present, however, Phaeaco’s parallel nature is constrained to run on single-

processor computers. Overloading its computation of activation — repeated 

hundreds of thousands (if not millions) of times per BP-solving session — with 

the calculation of a fun  as demanding as an arctangent would result in a 

system that worked in t , but in practice was unable to deliver the expected 

results. Accordingly, a s id-like function is implemented in Phaeaco without 

making use of trigonom or other math-intensive calculations. To this end, the 

sigmoid function is parti d into three distinct pieces (see Figure 7.19). 
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necessary to insist that the sigmoid-like curve be smooth; for example, at point x1 

the slope of the tangent as x → x1 from the left can be different from the slope of 

the tangent as x → x1 from the right; and similarly for x2. Other simplifying 

assumptions, implied by the fact that the sigmoid-like function has a center of 

symmetry at (½, ½), are that x2 = 1 – x1 (assuming x1 < ½), and that parameters a1, 

b1, and c1, are not independent of a2, b2, and c2, since the two curved pieces are 

mirror images of each other, and thus pieces of the same hyperbola. But we need 

not become further mired in the specifics of the implementation at this point. 

Suffice it to say that a number of simplifying decisions, such as those above, can 

lead to an implementation that uses computer resources efficiently. 

7.3 Numerosity 

The percept of numerosity was briefly introduced in §1.2.1, and BP’s that depend 

on the perception of numerosity were discussed in §5.1.1, along with an outline of 

how Phaeaco handles such BP’s. The present subsection discusses in greater 

detail the percept of numerosity and its implementation in Phaeaco’s architecture. 

 

Figure 7.20: How many dots are present, without counting? 
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An example of the simplest kind of the percept of numerosity is given in 

Figure 7.20. Assuming we are allowed to look at the figure for no more than a 

second, how many dots are there in the box? Even though an exact answer cannot 

be given, people can make a rough estimate. Clearly, hardly anyone would report 

fewer than 10 or more than 50 dots (and these limits seem far too conservative). 

Reasonable guesses could be in the range between 15 and 30. 

7.3.1 Background 
That we do not need to resort to explicit counting to have a rough sense of the 

quantity of something is a well established finding in psychology. Since the 

1920’s, psychologists have been examining the relation between the number of 

occurrences of an input feature (“stimulus”) and the strength of its association 

with a corresponding action (“response”) by a cognitive agent (Thurston, 1927). 

Because the estimation of the absolute number of a percept (such as the number of 

dots in Figure 7.20) depends on the subject’s prior experience with small and 

large numbers, and even on their cultural background, later studies focused on the 

perception of ratios, or differences of numbers.41 For example, in one study 

subjects were presented with 20 × 20 arrays of short vertical and horizontal lines, 

and were asked to estimate the proportion of one of the two orientations in the 

array (Shuford, 1961). It was found that the estimates were more accurate if the 

actual proportion of the specified target-orientation was either small (20% –30%) 

or large (70% –80%), whereas the worst estimates were made when the proportion 

was around 50%. This is consistent with the idea that smaller numbers are 

 
41  However, studies letting subjects report directly a number to describe the perception of 
numerosity have not been absent (e.g., van Oeffelen and Vos, 1982). 
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perceived more accurately than larger ones.42 The study included also red and 

blue squares instead of vertical and horizontal lines, and the results were similar. 

Other studies focused on response times. It was found that subjects are faster 

in determining the correct order of two digits if the difference between the two 

digits is large, rather than small (Moyer and Landauer, 1967). Experiments were 

repeated with letters of the alphabet, judging their alphabetic distance (Parkman, 

1971), dot patterns (Buckley and Gillman, 1974), rows of dots, and the auditory 

form of spoken English words for numbers (Shepard, Kilpatric et al., 1975). In all 

cases the decision time was found to follow approximately a logarithmic function 

of the numerical difference between the two compared quantities, known as 

Welford’s formula (Moyer and Landauer, 1973; Welford, 1960). 









−
⋅+=

SL
LkaRT log  

Equation 7.1: Welford’s formula for reaction time in numerosity comparison 

In Welford’s formula (Equation 7.1), which is an elaboration of the Weber–

Fechner law,43 RT stands for “reaction time”, L and S are the larger and smaller of 

the two compared quantities, respectively, and a and k are constants. 

In addition to people being able to compare quantities, it is well known that 

animals also have a sense of numerosity that varies from rudimentary to 

astonishing, depending on the species. In a series of studies, experimenters taught 

hungry rats to press levers a number of times to receive food. The rats learned by 

trial and error (by hitting the levers randomly) that, for example, after four hits on 
                                                 
42  A large number of horizontal lines in an array implies a small number of vertical ones. Thus, in 
seeking to estimate the proportion of one kind in a sample that consists of two kinds, “small” 
means close to one of the two ends (0% or 100%), whereas “large” means close to 50%. 
43  According to the Weber–Fechner law, linear increments in sensation S are proportional to the 
logarithm of stimulus magnitude m: S = k·log(m) (Fechner, 1860; Weber, 1850). 
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lever A and a final hit on lever B, the door of a compartment with food would 

open; other rats learned that the “right” number on lever A was eight; and so on, 

up to such “exotic” numbers as 12 and 16 (Mechner, 1958; Platt and Johnson, 

1971). It turns out that the performance of the rats is very telling regarding their 

perception of numerosity. The animals never learned to hit lever A the right 

number of times accurately, but only approximately. When their attempts were 

cumulatively plotted on a graph, it was found that the population of hits 

approximated a Gaussian with mean value close to the right number. 

 

Desired number of hits

Observed number of hits

%
 R
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Figure 7.21: Rat numerosity performance (adapted from Dehaene, 1997) 

Figure 7.21 depicts an idealization of the rats’ performance. (For the actual 

data, see Mechner, 1958.) The depicted curves would be more accurate if they 

were slightly skewed towards the left, especially those at the low-numerosity end. 
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Even so, it is clear from the figure that the rats overestimated the desired number 

of hits, and the higher the desired number, the larger their overestimation. This 

was probably an artifact of the experimental procedure: the rats received a penalty 

for switching to lever B prematurely, after an insufficient number of hits on A. 

(Without the penalty they would immediately try to hit on B.) Also note that their 

accuracy dropped as the desired number of hits increased: the variability of their 

responses increased in proportion to the number that the rats were aiming for. 

Variations of such experiments showed that not only rats but many other 

species are capable of perceiving numerosity in a variety of input forms: food 

items, sounds, time duration, light flashes, and more. Raccoons, for instance, can 

learn to select the transparent box that contains exactly three grapes, and to ignore 

similar boxes that contain two or four grapes. Birds can be taught to pick the fifth 

seed they find when visiting several interconnected cages. Pigeons, in particular, 

can discriminate between forty-five and fifty pecks at a target, under some 

circumstances (Dehaene, Dehaene-Lambertz et al., 1998). 

 Further support for animal arithmetic skills comes from findings such as that 

chimpanzees are capable of integer and even fraction addition. In one experiment, 

a chimp was allowed to select one among two trays with piles of chocolate chips 

for eating. Tray A contained two piles, one with four and another with three chips. 

Tray B contained also two piles, one with five, and another with a single chip. 

The two piles were widely separated in each tray. After watching the situation 

carefully, without any prior training, the chimp selected the tray with the 4+3=7 

chips, instead of the one with 5+1=6 chips (Rumbaugh, Savage-Rumbaugh et al., 

1987). In another experiment, a chimpanzee was first trained in fractions. When 

presented with a glass half-filled with a blue liquid, the animal had to point to an 

identically filled glass standing next to one that was three-quarters full. Then the 
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task was abstracted to one in which, after being shown the half-filled glass again, 

the animal had to make a choice among a half apple or three-quarters of an apple, 

which the chimp passed successfully. Finally, the stimulus consisted of a half-

filled glass and one-quarter of an apple, whereas the choice was between one full 

disc and a three-quarters disc. The animal chose the latter more often than chance 

alone would predict. Whatever underlying representation was used, the chimp 

must have performed the equivalent of ½ + ¼ = ¾ in human math notation 

(Woodruff and Premack, 1981). 

If animals are capable of such arithmetic feats, it is hardly surprising that 

human babies have similar abilities. Indeed, Piaget’s constructivist theory 

notwithstanding,44 perception of numerosity has been confirmed in infants. 

Introducing the now widely used method of infant habituation45 in the 1980’s, 

Prentice Starkey first established that children between 16 and 30 weeks of age 

were able to discriminate between small numbers, such as two and three (Starkey 

and Cooper, 1980). Later it was argued that even newborns could discriminate 

between numbers two and three a few days after birth (Antell and Keating, 1983). 

Several more experiments have established that infant abilities in numerosity 

perception are as sophisticated as those of other species. Indeed, no adult 

 
44  Jean Piaget, in mid-twentieth century, claimed that children are born with a mind that is 
essentially “blank” in mathematical abilities, and gradually reach the abstract concept of number at 
the age of six or seven, after first having been trained in more fundamental notions, such as 
sensory-motor skills, the elements of logic, and the ordering of sets; before that age, the child is 
simply not “ready” for arithmetic (Piaget, 1952; 1954). Today Piaget’s theory is known to have 
misinterpreted a number of results from early experiments, and to contradict more recent 
experimental findings (Dehaene, 1997; Mehler and Bever, 1967). 
45  According to this method, a child is shown repeatedly scenes that include identical, or very 
similar percepts, until the child is habituated and looks away very soon after each presentation. 
When a perceptually different scene is introduced without warning, the child’s fixation time on the 
“interesting” scene is recorded. A longer fixation time indicates the child noticed the difference. 
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chimpanzee or other animal seems capable of competing with human children 

older than three years of age (for a review, see, e.g., Lakoff and Núñez, 2000). 

The perception of numerosity by humans (of any age) is different from the 

concept of “number”, acquired after years of formal training. Though we instantly 

have a sense of quantity by looking briefly at the dots in Figure 7.20, we feel at a 

loss if asked to report their exact number. Nonetheless, given sufficient time, we 

can employ some method for counting the dots (perhaps using our fingers as aids 

to conceptually group and avoid re-counting some already-counted dots), by 

which we can report the exact number (23 in Figure 7.20). In many aspects, our 

numerosity perception does not differ at all from the corresponding ability of 

some animals. Specifically: 

• our ability to discriminate between quantities is sensitive to the difference of 

those quantities: it is easier to discriminate between 5 and 10 than between 5 

and 6; and 

• our discrimination ability is also sensitive to the absolute magnitude of the 

compared quantities: it is easier to discriminate between 5 and 6 than between 

25 and 26. 

Both observations are predicted by Welford’s formula (Equation 7.1). 

7.3.2 The accumulator metaphor 
What cognitive mechanism could possibly account for the arithmetic abilities of 

animals, or for something like Welford’s formula? Iterative (algorithmic) 

mechanisms have been proposed by some authors (Buckley and Gillman, 1974; 

Moyer and Bayer, 1976), but they apply only to comparisons of quantities, and 

not to perception of quantity per se. Instead, Phaeaco implements a mechanism 
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that models directly the perception of quantity, called “the accumulator metaphor” 

(Dehaene, 1997). Due to its simplicity, this model is particularly elegant. 

According to the accumulator model, each of the dots in Figure 7.20 adds to 

an internal cognitive “accumulator” a quantity that is not exactly “1”, but “around 

1” (because in biology this is implemented with an inexact chemical quantity, 

rather than digitally). The added quantity can be thought of as a random variable 

from a Gaussian distribution with mean µ = 1 and standard deviation σ0 — a 

constant for each individual, but varying slightly across individuals. Thus, for 

example, the 23 dots of Figure 7.20 add to the accumulator 23 random numbers 

generated from a normal distribution N (1, σ0), for some σ0. The larger the number 

to be perceived, the larger the margin for error in the accumulator. Does this 

model explain the observations of §7.3.1 regarding the perception of numerosity? 

The sampling distribution of the sum of n Gaussians N (µi, σi), i = 1, … n, is 

again a Gaussian N (µΣ, σΣ) (Equation 7.2; this can be proved by induction on n). 
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Equation 7.2: (a) mean and (b) standard deviation of a sum of Gaussians 

In the case where all µi are equal to 1 and all σi are equal to a constant σ0 it 

follows that µΣ = n, and σΣ = n σ0. Thus, the probability density function Gn for 

the n-th cumulative Gaussian is given by Equation 7.3. 
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Equation 7.3: Probability density function for a sum of Gaussians N (1, σ0) 
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Phaeaco uses Equation 7.3 both for the task of estimating the quantity of 

anything perceivable and for the task of comparing quantities as follows: 

Suppose the input contains n similar percepts (they can be objects, slopes, 

angles, relations, or anything discrete, hence countable). To form a representation 

of the numerosity of such percepts, Phaeaco executes the procedure suggested by 

the accumulator metaphor, i.e., adds a random number generated from N (1, σ0) to 

a numerosity node n times. (Such additions happen not all at once, but whenever 

one of the instances of the counted entity is perceived — cf. also the construction 

of the node that counts the numerosity of the two lines in the example of §7.1.) 

When Phaeaco is asked to report this numerosity as an integer number, it outputs 

the integer that is closest to the accumulated real-valued quantity. For small 

numbers (up to 5), the reported integer is almost always accurate; but for larger 

numbers errors accumulate, and the probability of reporting the wrong integer 

increases, just as would be expected from a biological cognitive agent. 

It follows from the previous paragraph that to calculate numerosity, Phaeaco 

uses Equation 7.3 only implicitly. In contrast, when comparing two discrete 

quantities, the equation is used explicitly. Specifically, to compare two 

numerosity nodes with values L and S, Phaeaco executes the following iterative 

algorithm. 

1. The probability density functions GL(x) and GS(x) are considered. Two 

initial samples SL and SS of size m each are generated from GL(x) and 

GS(x), respectively, where m is a small constant (e.g., reasonable values 

are between 10 and 15). At this point the reaction time RT is set to m. 

2. A standard statistical decision test is applied to determine whether the 

samples SL and SS originate from different populations. The test uses the 
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known standard deviations of the populations, σL = L σ0 and σS = S σ0, 

respectively, and hence the observation that the random variable  
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is a standard normally distributed variable, where m´ is the current size of 

the samples SL and SS (initially equal to m). (Cf. also §8.2.2.) 

3. If the test determines that the populations differ, the algorithm ends. 

4. If the test cannot determine a difference with sufficient confidence, one 

more sample value is added to each of SL and SS, the reaction time RT is 

incremented by one, and the algorithm returns to step 2. 

Simulation can show that the above procedure yields reaction times that 

follow the general trend of RT in Welford’s formula. The constant a in Equation 

7.1 is akin to the constant m in the algorithm above. Nonetheless, some words of 

caution are necessary. 

Welford’s formula should not be regarded as a “law” to be applied blindly in 

numerosity perception. Specifically, suppose S = 1000 and L = 1001 in a display 

of two boxes with the corresponding numbers of dots. It is then essentially 

impossible for the human visual system to discern any difference in numerosity. 

Welford’s formula predicts that an answer will be given on average in a + k·7.9 

seconds, but it does not account for the fact that this answer will be random. To 

address this problem, Phaeaco uses an upper bound for the number of cycles in 

the algorithm above. If this upper bound is exceeded, the algorithm concludes that 

the numerosity appears about equal in both cases. 

The consistency of the accumulator metaphor (as implemented in Phaeaco) 

with experimental results (such as Welford’s formula) should not be construed as 
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evidence that animal cognition also performs statistical tests of difference of two 

populations. Perhaps animal cognition implements the equivalent of such tests in 

an analogous, neuronal way. The consistency simply lends to Phaeaco a more 

human-like, less computer-like behavior when comparing quantities. 

Finally, the perception of numerosity is a complex task — definitely more 

complex than examples with dots in boxes suggest. For example, it is known that 

when features are spatially clustered, people systematically overestimate their 

numerosity (Goldstone, 1993). Also, in idealized laboratory inputs that contain 

dots, lines, etc., it is not easy to tell whether people attend to the number or the 

spatial separation (density) of the counted entities. Phaeaco’s treatment of 

numerosity should be seen merely as a step in the right cognitive direction. 

7.4 Other visual primitives 

Some of the visual primitives that are available to Phaeaco in its current 

implementation were discussed in §7.1. Several other primitives that occur in 

inputs more complex than a Λ-shaped object are discussed in this section. 

7.4.1 Dots, points, abstract percepts, and conceptual hierarchies 
If a collection of connected pixels is so physically small that even the 

magnification procedure46 will fail to assign a shape to it, Phaeaco perceives the 

collection as a “dot”. Dots can be as small as a single pixel, or as large as a region 

approximately 5 x 5 pixels in size, but isolated pixels occasionally can be missed 

altogether (“not seen”) by the retinal-level image-processing algorithms. As the 

number of connected pixels that form the dot increases, the probability of missing 

the collection decreases sharply, becoming practically zero for collections of four 
                                                 
46  Outlined in §5.1.5, and to be further discussed in §10.3.17. 
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or more pixels. Pixels that form “dots” might even have tiny holes in them (e.g., a 

few pixels missing), which also fall below Phaeaco’s discrim ation ability. 

 
Figure 7.22: Representation of a single dot in a b
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Another generalization concerns Phaeaco’s ontology of concepts. Though a 

distinction was already drawn between “real” and “imaginary” percepts in §7.1, 

there is a further class of abstract concepts that do not correspond to any percept 

in the input. In the present context it is appropriate to mention the notion of a 

“point”. A “point” is to a “dot” (and to a “barycenter”, see §7.1) roughly what the 

class “mammal” is to the class “dog” (and an imagined mammal, such as 

“unicorn”, would correspond to “barycenter” in this analogy). Phaeaco never 

creates nodes in the Workspace to represent points, but there is a permanent node 

in LTM that corresponds to the Platonic notion of a “point”, which is also 

connected with the Platonic notions of “dot” and “barycenter” through two-way 

links of type “is a kind of ” (from “dot” and “barycenter” to “point”) and “has 

subclass” (from “point” to “dot” and “barycenter”).47 Each property of a point is 

also inherited by its subclasses. For this reason, when Phaeaco determines that 

something in the input is a dot and links it to the LTM concept of a dot, it 

“knows” that it can create codelets for its x- and y-coordinates not because the 

Platonic dot is linked explicitly to such notions, but because every dot “is a kind 

of ” point, and points are known to have coordinates. Nonetheless, dots have the 

additional property of size, which points (and barycenters) lack. 

This, of course, is none other than the classical (Aristotelian) notion of a 

hierarchy of categories, which object-oriented programming languages reinvented 

and implemented as “class hierarchies”. Phaeaco implements this notion in its 

conceptual network in LTM (more in chapter 9). 

 
47  A figure depicting the represented concepts is deferred until chapter 9 where the LTM is 
introduced, so as to avoid  including representations of a completely different nature in the present 
chapter. 
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7.4.2 Vertices, Touches, Crosses, and K-points 
When two or more lines (straight or curved) share a point, they can do so in more 

complex ways than the simple “vertex” introduced in §7.1. Consider straight lines 

only, for the sake of simplicity. 

 
Figure 7.23: Three ways in which two lines can meet: a vertex, a touch-point, and a cross 

The three possible ways in which two line segments can meet are shown in 

Figure 7 3: the lines can meet at a ve tex; or one line can touch th  other at a 

“touch-p int”; or they can cross each o her at a “cross-point”. Conve iently, the 

shape of the Roman letters V, T, and X serves as a mnemonic o the words 

“vertex” “touch”, and “cross”. Phaeaco uses the symbols shown in Fi re 7.24 to 

depict su h points in representations. 
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K-points (using the shape of the letter “K”, or perhaps “komplex”, as a 

mnemonic). 

(a) (b) (c)

K-point K

Figure 7.25: More complex intersections: K-like (a), star-like (b), and their representation (c) 

A question that arises is how to represent K-points. Clearly, each such point 

admits a multitude of different “views” (see also §7.4.11) of how the lines are 

related. For instance, the K-point in structure (a) in Figure 7.25 can be seen as two 

touch points that coincide (the two slanted lines touching the vertical one); but 

also as a vertex (formed by the two slanted lines) that lies on a vertical line; or as 

two vertices that coincide (formed by a V-like and a Λ-like shape); or in a variety 

of other ways. Similarly, the star-like structure (b) in the same figure suggests that 

the number of possible descriptions grows exponentially with the number of lines 

that participate in the formation of the point. 

Phaeaco answers this question by neglecting the detailed and different ways in 

which lines at K-points are related, opting to keep a summary only of the 

structure. For example, structure (a) in Figure 7.25 will cause the creation of a K-

point node (c) and three λ-nodes linked to it: one for the vertical line segment, and 

two for the slanted ones. The various ways in which these lines are connected at 

the K-point is not important as a first representational approximation; if needed, 

the structure can be examined more carefully later, and complex connections can 

be “deduced” in a logical and systematic manner.  
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Structures made of lines such as those in Figure 7.25 suggest that even a 

simple touch point or a cross can be re-parsed and seen as consisting of more than 

two lines. Indeed, there is a BP that exploits precisely this idea (Figure 7.26). 

 
Figure 7.26: BP #87, necessitating a re-parsing of the intersected lines 

BP #87 (Figure 7.26), is a problem that looks simple, but is tricky. At first, the 

object in box I-B is perceived as an X. Similarly, there appear to be W-like, T-

like, F-like, O-like, H-like, and M-like objects in other boxes. All these are 

distractors, because by registering them as “letters” we are led away from the 

solution. In competition with this idea is the idea of “four lines”, which is most 

typically brought into conscious focus after one pays attention to the four isolated 

lines in box I-A, and is reinforced by the four lines making up the square and the 

W-like shape. Seeking confirmation of this idea, one builds up subcognitive 

pressure to “break up” the X-like structure (or any of the others that might require 
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re-parsing) into smaller constituent lines, so that the idea “four lines” is forced 

onto it. Once one succeeds with one of those structures, it gets easier to apply the 

same idea of “re-parsing” to the rest of the objects, and to do so on the right side 

as well, where it yields “five lines”. 

BP #87 is the example that Alexandre Linhares uses to illustrate what he calls 

“multi-perception”: the ability to break down already perceived structures in order 

to build new ones under some cognitive pressure (Linhares, 2000). The same idea 

is part of the notion of mental fluidity, a fundamental concept in other FARG 

projects such as Letter Spirit (Rehling, 2001), Copycat (Mitchell, 1990), and 

Metacat (Marshall, 1999) (see also §6.2, and Hofstadter, 1995a pp. 206-208). 

The constituents of V, T, X, and K-type intersection points do not have to be 

straight lines. Phaeaco can represent curves, too (§7.4.5), so that instead of λ-

nodes there can be nodes representing curves that are connected with intersection 

points in various ways. 

Finally, intersection points are all “points” in the abstract sense, therefore they 

create codelets that “want” to find their x- and y-coordinates. But in addition, this 

type of point results in the measurement of angles, which is the topic of the next 

subsection. 

7.4.3 Angles 
Angles are perceived only when an angle-measuring codelet generated by a V, T, 

X, or K-point is given its turn and runs. Angles are continuous features, and as 

such they have the statistical structure shown in Table 7.1. Thus, an “angle” in the 

context of Phaeaco’s architecture should not be confused with the common notion 

of an angle, which usually includes two lines and their point of intersection; the 

latter structure corresponds better to Phaeaco’s vertices, touches, crosses, and K-

points. 



  Workspace Representations 

  

180

Phaeaco is able to perceive only angles less than 180°, which implies that a 

vertex has only a single angle to be measured. But touch points and crosses have 

two possible values of angles that can be measured: either an acute and an obtuse 

angle, or two right angles (Figure 7.27). 

 
Figure 7.27: Types of angles produced by intersections of lines 

Phaeaco perceives both angles of touch points and crosses, and in the latter 

case it registers that each angle value appears twice (Figure 7.28). 

 

X

angle angle 

Figure 7.28: Representation of the two angles of a cross, registered (i.e., linked) twice 

K-points can have many perceivable angles. In such cases, it is much more 

likely that Phaeaco will notice the angle formed by adjacent line segments than an 

angle formed by line segments that include a third one between them. 

7.4.4 Line strings 
When several line segments are joined together vertex-to-vertex, or through more 

complex intersections, we do not perceive merely a set of lines plus their 

intersections, but a more complex shape, which appears to be more than the sum 

of its parts. 
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For example, the shape shown in Figure 7.29 seems to have more properties 

than its constituents perceived in isolation: it appears to consist of a “salient 

frame” intersected by “minor” line segments (the latter are shown in gray in the 

figure to depict the salient frame properly, but they would appear as normal black 

lines in a BP). The salient frame ends at two end-points (marked on the figure) 

that seem to be more amenable to perception than other end-points of the shape, 

by virtue of being the two end-points of the salient frame. 

 
Figure 7.29: A “line string” (or possibly several of them) 

Overall, the perceived frame gives the impression of a “curve”, but it cannot 

earn the status of a proper curve. (Proper curves are discussed in the next 

subsection.) Such structures are termed “line strings” in Phaeaco, and, in contrast 

to curves, they can be considered as the geometric analogue of sequences of 

integers, as opposed t  smooth ana tic function . 
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Figure 7.30 shows — by necessity — only part of the representation of a line 

string. Besides the depicted λ-nodes and the string-node at the top, there will be 

nodes representing the vertices at which the line segments meet, the numerosity of 

the lines, and possibly a few other percepts. However, the presence of a line string 

suppresses the codelets generated by the λ-nodes, by lowering their urgency. This, 

after all, is one of the main effects of a line string in a figure: its perception as a 

whole “quells” the perception of the details of its constituents. Similarly, the 

identification of an object as a tree in reality leads us (evidently subconsciously) 

to reduce the amount of attention paid to its branches, twigs, and leaves, at the 

moment the idea “tree” is accessed in our memory. 

There are several qualities that line strings share with curves. For example, 

they can be mentally “traced” from one end to the other, and various conclusions 

can be made about the manner in which the imaginary “point” traces the frame of 

the string. Also, line strings can form “bays” (as in Figure 7.29), or interior 

regions (§7.4.7) by intersecting themselves. They can also form polygons, and 

this is exactly how Phaeaco “understands” polygons: as closed line strings with a 

single interior. Although Phaeaco does not have the notion of “polygon” as one of 

its primitives, it is in a position to learn it by being repeatedly exposed to 

examples of polygonal shapes. 

A few other important issues must be mentioned before leaving the subject of 

line strings. First, when is a line string perceived? Is a triangle a line string? 

Phaeaco’s approach (which might by now be emerging as a pattern in the reader’s 

mind) is that the answer is probabilistic. A low numerosity of line segments has 

low probability of resulting in the perception of a line string. A triangle, in 

particular, has almost zero probability of being seen as a line string, but as the 

number of lines increases above four, the probability becomes significant. 
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Second, what happens in situations in which there is not a single salient line 

string to be perceived, but more than one that could be seen as a candidate? The 

drawing in Figure 7.31 depicts an extreme example of such a situation. 

 
Figure 7.31: A futile exercise for computers: how many line strings are there in this “crystal”? 

The last thing that can be expected from Phaeaco is that it will get tangled in a 

search (of anything) that leads to an exponential explosion. Simply put, there are 

no exhaustive search algorithms that have been implemented in the architecture. 

Given an object such as the one depicted in Figure 7.31, Phaeaco will indeed 

perceive a few line strings initially (comprising the longest line segments), but as 

soon as their number exceeds four or five, it will stop “trying” to perceive and 

represent any more of them explicitly. In general, as soon as the number of 

anything exceeds the low end of numerosity values (§7.3), a high-level codelet 

becomes activated in Phaeaco’s Workspace, monitoring the activity of other, 

lower-level codelets, and suppressing them when it detects that they will attempt 

to work on “one more of those ‘things’, of which we have seen many”. If, for 

instance, the “many things” are dots, the high-numerosity codelet will discourage 

the perception of the size and coordinates of each dot once a small sample of them 

has already been perceived; in the case of line segments, their slopes, lengths, 

intersections, etc., will be spared from explicit representation; and so on. In the 

end, given an object such as the one in Figure 7.31, a sample of its constituents 
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will be represented explicitly, but most will not. Instead, the focus of attention 

will be shifted to other percepts that do not depend on the details of its structure, 

such as its convex hull, area, elongatedness (§7.4.8), and so on. 

Finally, it should be noted that line strings are kinds of “objects” in Phaeaco’s 

ontology.48 If a line string stands alone, disconnected from other shapes, its node 

(depicted in Figure 7.30) can replace the object-node that ordinarily would have 

been constructed first.49 This is once again a general observation: identified 

shapes that stand by themselves replace with their specific nodes the more general 

nodes (e.g., “object”) that were inserted in the representation before the 

identification occurred. If, however, the string is part of a larger structure, its node 

will be connected as part of an overall object node. 

7.4.5 Curves 
Several of the characteristics of curves were discussed in the previous subsection 

in the context of line strings. Indeed, before a curve is identified as such, it is first 

identified as a line string at the retinal level; and before a conceptual 

representation of a line string is made at the cognitive level, other retinal-level 

routines act and identify the string as a curve. The details of these algorithms will 

be given in §10.3.8. Here it suffices to say that in Phaeaco’s ontology, both curves 

and line strings inherit the properties of a more abstract kind of object called a 

“linear structure” (for lack of a more descriptive term). A linear structure is an 

“object”, but it has a few extra properties: it can possess two end-points, can form 

“bays” and interiors — thus is capable of intersecting itself — and is traceable by 

a point from one end to the other. 

 
48  But see also the first paragraph of “Curves” (§7.4.5) for a qualification of this statement. 
49  Recall the construction of such a node in the discussion of the Λ-shaped object in §7.1. 
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Curves introduce a few more properties of their own. A “bay” is formed by a 

piece of a curve where the points from which the curve was constructed (at the 

retinal level) have a local maximum density (Figure 7.32). Bays have a certain 

measure called “curvature” in differential geometry, which Phaeaco perceives at 

the retinal level by fitting a circle to the bay and noticing its center. 

 
Figure 7.32: Construction of “center of curvature” in two “bays” of a curve (retinal level) 

Figure 7.32 shows the way “centers of curvature” are constructed: by drawing 

perpendiculars to near-tangent lines of the curve, and registering the approximate 

point where these perpendiculars meet. Although the center is known only at the 

retinal level, the radius of the circle provides a measure of curvature at the 

cognitive level; so the latter “knows” how sharp the bay of a curve is without 

having access to the actual number, or to the computational method by which this 

measure was found. The cognitive level can only report that a curve is “sharp”, 

“normal”, “blunt”, and so on, i.e., in qualitative terms. 

Once the circle and the center of curvature are known, the tangent line at any 

point of the curve near the approximating circle can also be computed. Thus, the 

cognitive level is capable of “imagining” tangent lines to a curve, if necessary. 

Nonetheless, not all curves are well-behaved, as the discussion thus far might 

imply. A spiral, for example, has no bays. Phaeaco is at a loss when presented 

with a spiral, being unable to perceive anything further than “there is a curve”, 

possibly including its endpoints and barycenter (every curve has one, being an 
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“object”). Consequently, BP #16 (see Appendix A), which depends on a property 

of spirals (their clockwise or counter-clockwise tracing), is unapproachable by 

Phaeaco at present. Another concept unknown to Phaeaco in its current 

implementation is the “direction” of a bay (if the bay were a “satellite dish” — a 

parabolic mirror — it would  to the direction of a ”). 
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given in §10.3.12. The computational method of representing curves at the retinal 

level (through piecewise smooth, parametric B-splines) will be explained in 

§10.3.8. 

7.4.6 Concavities and missing area 
In §5.1.3, the concept of concave objects was introduced in the context of BP #4 

(Figure 5.7), along with the concept of a convex hull. By “subtracting” a filled 

version of the actual object (if it is not already filled) from its convex hull, 

Phaeaco is able to perceive the concavities of the object (Figure 7.34a). Besides 

concavities, the same algorithm discovers other objects inside the original object 

if it is outlined (Figure 7.34b), or “holes” if it is filled (Figure 7.34c). 

 
(a) (b) (c)

Figure 7.34: Concavities (a), objects inside outlined object (b), and holes in filled object (c) 

In addition to identifying such objects and considering them in their own 

right, Phaeaco is able to obtain an overall perception of “how much is missing” 

from an object. There is no BP in Bongard’s collection based on such a percept, 

but it is conceivable that a BP could be designed in which the objects on the left 

side are missing a large portion of their convex hulls (in any of the three ways 

depicted in Figure 7.34), whereas the objects on the right side are missing 

considerably less of their convex hulls. Phaeaco represents the percept of 

“missing quantity” with a single feature node of a continuous nature, depicted in 
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Figure 7.35. However, this percept is not one of those that are readily available in 

a first look at the object. 

 

missing 
quantity

Figure 7.35: Representation of “missing quantity” of an object 

In addition to sensing the missing quantity, Phaeaco can also represent 

explicitly (as separate objects) all the cases shown in Figure 7.34. Concavities of 

case (a) are imaginary objects (§5.1.3), whereas objects such as those depicted in 

cases (b) and (c) are real, but “inside” the larger object. The notion of “inside” is 

the first mention of a relation between objects in the present chapter. This relation 

will be examined in greater detail in the following subsection. 

7.4.7 Interiors 
BP #15, a typical problem that distinguishes between objects that have an interior 

region and those that lack one, was mentioned in chapter 5 (Figure 5.9) as one of 

the BP’s that Phaeaco manages to solve. However, BP #15 appears to be making 

an “absolutist” distinction between objects that have a completely closed interior 

and ones in which a narrow “isthmus” connecting the interior to the exterior is 

sufficient to categorize the objects as “lacking an interior”. But, as is the case with 

most concepts, there can be shades of gray even in a concept as seemingly clear-

cut as the existence of an interior, as Figure 7.36 suggests. 
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Figure 7.36: Gradations in concept “interior” 

Phaeaco detects the “openness” of an interior. For example, on a scale of real 

numbers from 0 to 1, the leftmost object depicted in Figure 7.36 has an “interior 

openness value” of 0. As one moves from left to right, the other objects would be 

assigned larger values, with 1 reserved for a straight line segment. After all, these 

shapes can be seen as abstractions of real-life objects, such as flasks, phials, 

vases, pots, bowls, etc., all suitable for storing liquids in their interiors. Phaeaco 

measures the openness of an interior at the retinal level. First, the suggestion of 

the existence of such a region is given by the procedure mentioned in the context 

of concavities (§7.4.6). Once such a region is identified, a few points in it are 

sampled, as shown in Figure 7.37. 

 

“escaping”
rays

Figure 7.37: Measurement of the openness of an interior region 

A sampled random point is shown in the interior of the object in Figure 7.37. 

A number of “rays” emanate from this point at fixed angles. A few of these rays 

manage to “escape” to the exterior. By dividing the number of rays that escape by 

the total number of rays, we obtain a first approximation of how open or closed 

the object is. By repeatedly sampling a few more points and averaging the results, 
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Phaeaco makes the approximation reliable. Whereas these computations take 

place at the retinal level, the cognitive level can only report the magnitude of 

openness of an interior region qualitatively. Naturally, an object can have more 

than one interior (e.g., an entirely closed region and a few concavities, an in 

Figure 7.34a), and the openness of each can be represented as in Figure 7.38. 

 
interior interior+ – –+

Figure 7.38: Representation of the “openness of interior” of an object with two interiors 

It is also important to mention that although the notion “interior” is perceived 

as a value in a continuous range, Phaeaco can make a sharp distinction between 

completely closed interiors and all the rest, if the need arises (as in BP #15). 

The existence of interior re ions entails the possibility of one object being 

inside another. But just as the n tio  “ ter r” admits shades of gray, similarly, 

the notion “inside” can be blurry as ho n i  Figure 7.39. 
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— an imaginary object in Phaeaco’s perception. Region 2 is clearly inside the bay 

of region 1, but region 4 is not easily classified as being inside or outside, and by 

moving it slightly to the left or right we can vary the degree of “inside-ness”. But 

disregarding for the moment the uncertainty of the inside-ness of region 4, the 

discussion that follows explains the representations of regions 1, 2, and 3. 

First, it is necessary to introduce a new representational structure, one that 

applies only when relations are present. Suppose we want to represent the fact that 

region 2 is inside (or “is engulfed by”) region 1 (always using Figure 7.39 as a 

reference point). This is represented as shown in Figure 7.40. 

 
Figure 7.40: Partial representation of relation “object 2 is inside object 1” 

There are two object nodes in Figure 7.40, labeled50 “1” and “2”. Object 2 is 

linked to object 1 by an arrow pointing from 2 to 1, as in previous examples, but 

this time there is a black dot on this arrow, and a line leads from this dot to the 

elongated node labeled “is inside”. Relations will be depicted with elongated 

nodes from now on, although they do not differ essentially from other nodes. 

Figure 7.40 is strongly reminiscent of drawings of relations in GEB (§6.2, 

Figure 6.4) and the Slipnet (Figure 6.7). Nonetheless, the similarity is superficial. 

 
50 As usual, labels are present only for our convenience; in Phaeaco’s representations, nodes 
correspond to objects in the input by virtue of their associated retinal-level information. 

1
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Later, when Phaeaco’s LTM is explained (in chapter 9), the similarity will be 

substantial. In Phaeaco’s Workspace, however, the arrows that connect nodes in 

relations are mere “cables”: they do not shrink according to the activation of the 

relational node, which is the most essentia  characteristic in the Slipnet and in 

Phaeaco’s LTM; instead, they simply denote what is related to what, and how. 

The drawing in Figure 7.40 depicts the elation only partially. Every relation 

is a two-way concept: if one thing is rela d to another, then the latter is also 

related to the former, in an inverse type of re ation. This is shown in Figure 7.41. 
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does to object 1 (i.e., “completely inside”). However, object 3 is not exactly 

“completely inside” object 1 (because the tw  objects touch each other at the right 

side of their borders), and so the “insid -ness” of object 3 in object 1 is 

quantitatively different from the previou two cases (“less than completely 

inside”). The degree of strength of a relatio  is stored in the structure represented 

by the small black d t on the arrow that lin s the nodes, and is implemented as a 

real value in the ran e from 0 to 1. For example, a value near 0.5 would represent 

the inside-ness of ob ect 4 with respect to ob ect 1 in Figure 7.39. 
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because “inside” is related to “outside” through the concept “opposite”, the 

concept “outside” receives some activation, too. This increases the urgency of 

Workspace codelets waiting to notice objects outside one another, and when such 

codelets run, the relation “outside” is explicitly added to the representation. 

7.4.8 Elongatedness 
At first thought, the elongatedness of an object seems to be one more continuous 

feature like the ones discussed so far: a straight line is perfectly elongated, and a 

circle perfectly round. The reality is more complex, however. 
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Figure 7.43: What is the value of elongatedness of this shape? 

The object in Figure 7.43 does not seem to admit a single numerical value as a 

description of its elongatedness: it is bulky at the top, narrower at the bottom, and 

has a varying degree of thickness along what appears to be its length. Even its 

convex hull seems to suffer from the same indescribability of elongatedness. 

Nonetheless, the phrase “what appears to be [the] length [of the object]” was 

just used, and this notion is not devoid of content. If there is some way to define 

an internal linear frame, or “skeleton” for this object, then perhaps a value of 

elongatedness can be assigned along selected points of this skeleton. The 



7.4 Other visual primitives 

 

195

sequence of these values at each point as a whole can be the percept of 

elongatedness. 

Indeed, this is the approach taken in Phaeaco. In the next subsection, the 

derivation of an internal skeleton for an object will be described. The skeleton, 

being a “linear structure” (§7.4.5), can be traced by a point along its length, and 

the elongatedness can be estimated at discrete intervals through an algorithm that 

is based on another one that examines filled regions (§10.3.6). What is obtained 

then is a sequence of values (real numbers in [0, 1]) that can be stored in 

association with the skeleton. Thus, elongatedness is a feature that has a “vector” 

nature, rather than a scalar one. The elongatedness vector can be given by means 

of a function f (x), which is defined not by a mathematical formula but by the pairs 

of coordinates of its points, where x varies discretely in [0, 1], and f yields values 

also in [0, 1] (where 0 = “low” and 1 = “high” elongatedness). 

Reality can be both more complex and more simple than the object in Figure 

7.43. For example, the skeleton of an object can be branching, in which case the 

vector of elongatedness is defined on each branch. But most BP’s present us with 

simpler objects having a linear skeleton and a constant elongatedness along that 

skeleton. In this case, elongatedness reduces to a scalar value. Figure 7.44 shows 

what the representation looks like in such special cases. 

 
elongatedness

Figure 7.44: Representation of elongatedness in the special case of a scalar value 
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Many objects in BP’s are circles and regular polygons, with an elongatedness 

of exactly zero (their skeleton is a point). But Phaeaco was not designed with the 

BP’s as its ultimate and limiting domain, so it cannot rely on simplifying 

assumptions, such as that the elongatedness is either zero or nonzero but constant. 

7.4.9 Endoskeleton and exoskeleton 
In the biological world, some animals (e.g., the vertebrates) have an internal 

structure of bones and cartilage called an “endoskeleton”; and others (e.g., the 

crustaceans) have an external supporting structure, the “exoskeleton”. Similarly, 

one can identify two analogous structures in visual objects. The previous 

subsection offered a raison d’être for the notion of the endoskeleton of an object, 

an example of which is shown in Figure 7.45. 

 
Figure 7.45: The endoskeleton (internal line) and exoskeleton (outline) of an irregular object 

The endoskeleton is a set of points that stay as far away from the borders of 

the object as possible. Its computation is deferred to chapter 10, because it is part 

of the initial stages of visual analysis at the retinal level. 

The exoskeleton of an outlined object is merely its outline; and if the object is 

filled, its exoskeleton (also identified at the retinal level) is its set of border pixels. 
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Of the two structures, the endoskeleton somehow appears to be of more 

fundamental importance: it is what remains if we stay with the “bare bones” of the 

object and abstract from it a single line, or a set of branching lines. Although 

abstracting objects by their endoskeletons is not an operation demanded very 

frequently in BP’s, it is very important in general, given complex shapes. 

 
Figure 7.46: A complex figure, and its superimposed endoskeleton as computed by Phaeaco 

An example of the utility of finding the endoskeleton is shown in Figure 7.46. 

Analyzing the structure of the endoskeleton yields useful information about the 

parts comprising the object. Phaeaco processes the endoskeleton as it would 

process any other linear structure. Figure 7.47 shows how Phaeaco depicts the fact 

that an endoskeleton has been computed and incorporated into a representation. 

 
endoskeleton

Figure 7.47: Simplified representation of endoskeleton 



  Workspace Representations 

  

198

However, it must be noted that Figure 7.47 has been simplified: ordinarily, an 

entire network of nodes representing the endoskeleton structure “hangs” under the 

single endoskeleton node, just as for every linear structure (e.g., a line string). 

In contrast, the exoskeleton of a figure does not require an explicit special 

node for its representation. For example, the exoskeleton of an outlined triangle is 

the lines that comprise the triangle (see the representation of the Λ-shaped object 

in Figure 7.15 for a similar example); and if the triangle is filled, its representation 

is the same, except that its “texture” node has value “filled”. 

7.4.10 Equality, for all 
Suppose the input is one of the boxes that belong to the left side of BP #56 

(§5.1.4, Figure 5.10), the solution of which is: “all objects have similar texture”. 

A sample box is given below. 

 
Figure 7.48: One of the boxes of BP #56 

A question that must be answered concerns the representation of the phrase 

“all objects have similar texture”. There are two words in this phrase that cannot 

be represented by any type of node discussed so far: “similar” and “all”. 

The word “similar” can be used in English in a variety of situations that are 

not very similar to the way it is used in the above phrase. For example, two 

election campaigns can be judged as “similar”, meaning that people can see the 

analogous elements among the two campaigns. Or, a model house made of 

cardboard can be said to be similar to a real house, which need not even exist. In 
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this case, similarity refers to near-equality that results from bringing the miniature 

and full-size versions of the two objects to the same scale. In the phrase pertaining 

to BP #56, the word “similar” refers to equality, or sameness, of textures. Phaeaco 

can use the notion “similar” in the following cases: 

• for absolute equality in values of a discrete feature (e.g., same texture); 

• for approximate equality in values of a continuous feature (e.g., same size); 

• for approximate equality in numerosity (“same number of ”), which reduces to 

absolute equality for low-numerosity values (e.g., up to about five; see §7.3); 

• for similarity of shape, if one object can become identical to another by scale 

change, rotation, or translation (e.g., a small square and a large diamond); 

• for identity of relations (e.g., two or more pairs of objects, each pair consisting 

of a circle inside a triangle). 

If the equality concerns the value of a feature or numerosity (as in the first 

three cases above), then representations, as they have been presented so far, 

possess a property that hints at the existence of the equality. 

 
Figure 7.49: Implicit representation of equality (four objects with the same texture) 

For example, Figure 7.49 shows four object nodes (representing the four 

objects of Figure 7.48) sharing the same texture value (presumably “outlined”). 
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That these objects have equal texture can be inferred from the four arrows that 

point to the same node. Indeed, the texture node stores internally the number of 

nodes that have been lin ed to it, so in a sense it “knows” that there are several 

objects sharing this text e (it maintains an “internal numerosity” value). But this 

knowledge is implicit, a  Phaeaco can also represent it explicitly, as follows. 

 equality 
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probability for this codelet to be activated. This codelet is analogous to a type of 

agent referred to as a “sameness detector” (“Sam”) in GEB (Hofstadter, 1979, p. 

650). After the equality codelet runs and completes its work, it adds a structure as 

shown in Figure 7.50. What has been omitted from the figure is that the equality 

node is accessible (linked) from the visual-box node that stands at the “top” of the 

entire structure. 

Equality nodes are a special case of a category of relational nodes called 

“grouping nodes”. Relations such as “is inside” and “is outside” (§7.4.7) also 

allow the formation of groups by inducing a dichotomy between things inside and 

things outside. In reality it is hard to find relations that cannot group their 

referents,52 so most relations are of the grouping kind. 

Nonetheless, the proposition “Some objects have outlined texture” differs 

from “All objects have similar texture” in two ways: we still do not know how to 

represent “all” or “generally similar” (with no reference to a specific value). 

The concept of “all” follows naturally from what we have seen so far. Once a 

grouping node is established, it places a high-urgency codelet on the Coderack 

that wants to examine precisely whether the grouped items are the only ones that 

can be thus grouped. As was mentioned earlier, the equality node is connected to 

some “top” inclusive node (the visual box in the example of Figure 7.48). 

Therefore, if there are no more nodes of the same type (object nodes, in our 

example) as the grouped ones under the inclusive top node, the codelet concludes 

that “all” entities that exist have been grouped, and adds the special “for-all” node 

into the structure, as shown in Figure 7.51. The corresponding proposition that 

can be derived from this structure is: “All objects have outlined texture”. 

 
52  “Successor” and “predecessor” in sequential structures could be non-grouping relations. 
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Figure 7.51 introduces two new elements. First, a for-all node belongs to yet 

another type of node, not encountered so far, the “quantifier” (hence the different 

— hexagonal — shape for its depiction). At present, for-all is the only quantifier 

implemented in Phaeaco’s architecture. (The other important quantifier, “there 

exists”, is implicitly understood every time a representational node exists in a 

structure.) The second new element in this figure is the LTM node “Platonic 

object” (depicted with a dashed outline). This is necessary in order to emphasize 

that the notion “object” in the proposition “all objects have outlined texture” 

refers not to any particular obje  among the four ones that have been created in 

Workspace, but abstractly to ob cts in the visual box. The type of the quantified 

entity in this proposition is “obje t”, and its scope is “those in the visual box”. 

Figure 7.51: Represen
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fundamentally wrong for serving as representations of propositions. Could it be 

that Phaeaco has been caught in the same logic trap as RF4? 

Closer examination, however, reveals that the representational similarity is 

merely superficial. Firstly, Phaeaco is not spoon-fed such propositions by a 

programmer, but discovers them after laboriously examining the visual input, as 

well as its own representations. Secondly, the node that represents an object in 

Phaeaco is grounded (via a link to retinal-level information) to an object that 

belongs to the external world, contrary to a symbol such as “x”; the same is true 

for the texture node (grounded to the white color of the input object), contrary to a 

predicate of the form texture(x) = outlined; and so on. Finally, Phaeaco does not 

include a calculus to perform logical derivations, or to manipulate formulas and 

add “theorems” and “corollaries” to the propositions it discovers; it merely “sees” 

some simple ideas that happen to be describable by what millennia of human 

inquiry into cognition has distilled into what is known as predicate calculus. 

Traditionally, it has been asserted that the distilled formulas of logic are 

fundamental and real, existing in the human brain — perhaps in some module 

specializing in logical reasoning. In contrast, the approach taken by Phaeaco is 

that distilled logic formulas exist only in those minds that have been inculcated 

with the so-called “Western” edifice of scientific knowledge and mathematical 

reasoning. The edifice is not “wrong” — it is truly beautiful; but the formulaic 

calculus of logic comprises not its foundations, but the elaborate and fragile 

furniture of its most recently constructed floors. 

However, this supposition does not imply that mathematical logic is the 

contingent outcome of a random path of human thought, led either by some 

cultures, such as the Greeks, or by some individuals, such as George Boole, as 

some authors have recently suggested (e.g., Lakoff and Núñez, 2000, p. 118). 
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Human thought converged to the formalization of mathematical logic for a good 

reason: human cognition, together with the rest of our physical makeup, reflects 

— in an abstract way — the properties of the world in which we evolved. For 

example, we possess eyes seeing in the visible range of the electromagnetic 

spectrum because photons that arrive on the surface of our planet belong mostly 

to that part of the spectrum; we possess lungs to inhale oxygen and blood to 

circulate it in our body because oxygen, alone among all elements, makes 

combustion possible; and so on. Likewise, it seems reasonable to assume that we 

can count objects because objects and numbers exist in the world, rather than that 

our minds conjure them up; that we can perceive regularities and patterns, such as 

straight lines, circles, symmetries, and so on, because such regularities are part of 

our environment, and that our spe ies — occupying the “intelligence niche” — 

evolved to perceive such regula ties because doing so gave us a survival 

advantage. In contrast, it seems p rticularly arrogant to claim that mathematics 

does not exist in the external world but instead that we humans invented it. 

Figure 7.52: Representa
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Finally, we can now proceed to the representation of the more abstract 

proposition “all objects have similar texture”. The representation is shown in 

Figure 7.52, and involves one extra step of abstraction: the arrow that previously 

connected the node of equality with the outlined texture node in Workspace now 

points to the Platonic node “texture” in LTM. All else is identical to the structure 

in Figure 7.51. 

7.4.11 Necker views 
A Necker cube is a well-known object in psychology, first noted in 1832 by Swiss 

crystallographer Louis Albert Necker. Our perception of its structure constantly 

flips back and forth between the two possible ways to perceive the three-

dimensional arrangement of its sides and edges (Figure 7.53). 

 
(a) (b)

Figure 7.53: Necker cube (a), and two possible ways to perceive it in three dimensions (b) 

What is interesting about the Necker cube is that we feel there is no way to 

entertain simultaneously its two “conflicting” representations in our minds: we 

may focus on one view or the other, but not on both at the same time. 

The Necker cube situation appears often in Phaeaco’s input, even in drawings 

not nearly as complex as a Necker cube. Figure 7.54, for example, shows a very 

simple yet ambiguous drawing: is it a short line segment, or a very narrow filled 

rectangle? How is such an object to be represented? Should one representation 
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(e.g., “straight line segment”) be favored over the other? Should the disfavored 

representation be forgotten and deleted from Workspace? But what if the context 

changes, necessitating the “other” representation? Is the forgotten representation 

to be constructed once again, as if the system has never seen it before, forgetting 

the first (original) representation this time? 

 
Figure 7.54: A simple ambiguous drawing: line segment or filled rectangle? 

Phaeaco answers this dilemma by keeping the two representations in parallel 

(assuming it reaches both at some point) by means of a special representational 

element: a “Necker view node”, shown in Figure 7 5. 
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the next chapter; if the matched or updated representation contains a Necker view 

node, then the algorithm that performs the matching, updating, etc., will be forced 

to “choose” one of the two views in order to proceed. 

Any number of views can coexist under a Necker view node, which is one of 

the possible ways to represent the idea of “or”, or “alternatives”. In a way, the 

Necker view node acts as if it were not present, because after one of its views has 

been assumed, the alternatives become temporarily inaccessible. Nonetheless, the 

system is aware that alternative views exist, so that given a suitable contextual 

pressure it can switch to one of the alternative views without reconstructing it 

from primitives. 

7.5 Some general remarks on visual primitives 

Confronted with the BP domain, either as a solver or a designer of problems, one 

at first develops the impression that the variety of possible ideas that can be 

expressed in BP’s is endless — quite literally infinite. Another possibility is that 

the set of available BP’s, though not literally infinite, is so vast that any attempt to 

describe it thoroughly with a collection of examples is destined to fail. However, 

it was mentioned in an earlier chapter (near the end of §5.1.4) that a set of 

approximately 10,000 different BP’s could include the ideas of all but the most 

creative designers. Which view is right? 

The notion of a true infinity of BP’s can be easily shown to be false, assuming 

the discrete nature of the input.53 Suppose each of the k boxes of a problem  has 

dimensions m × n (for example, usually k = 12 in BP’s, and m = n = 100 in 

 
53  “Continuous” input can be discretized to any desired degree of accuracy, hence the argument 
presented here includes continuity as its limiting case; in addition, it is doubtful that continuity 
exists in the physical world in any way other than as an idea in human minds. 
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Phaeaco’s input). Then there is a maximum of 2k·m·n possible black-and-white 

“BP’s” that can exist, and that is the end of the infinity hypothesis. 

Still, using Phaeaco’s default assignment to k, m, and n, the number 2k·m·n (i.e., 

2120,000) is vastly larger than the total number of elementary particles in the 

observable universe. If we wanted to keep a record of all possible BP’s, the entire 

known universe would not suffice. Could there be any validity to the notion that 

the number of interesting BP’s is so large that it cannot be adequately 

approximated with any manageable collection of examples? 

There are two ways in which a designer can come up with interesting new 

BP’s: by discovering new visual primitives or by defining new concepts using 

known primitives. 

The second method indeed leads to a large collection of BP’s, but inevitably, 

an observer of the collection will find most such problems esoteric. For example, 

given the concept of a triangle, one may define a multitude of “centers” associated 

with it; some of them are well known (e.g., barycenter, incenter, circumcenter, 

orthocenter); but other centers are little known to the non-expert (excenters, nine-

point center, Nagel point, symmedian point, Fermat point, Gergonne point, 

Morley centers, Hofstadter one and zero points, and many more). One may then 

consider lines that pass through such, often collinear centers (e.g., the Euler line), 

circles defined by them, their points of intersections that define further triangles, 

and so on. In this way, an entire “geometry of the triangle” has been developed 

(e.g., Kimberling, 1998). But now consider a BP that includes a single triangle in 

each of its 12 boxes, the solution of which is as follows: on the left, the Euler line 

of each triangle is vertical; whereas on the right, the Euler line is horizontal. This 

BP would be completely unapproachable by the vast majority of people; and even 

the few experts who have dedicated entire decades to the study of triangle 
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geometry would need to be given some hint that this BP is relevant to their area of 

expertise before they could adopt the necessary approach. 

The Euler-line BP that was just proposed is an extreme example, but it helps 

to appreciate the idea that the method of making definitions of exotic concepts 

does not result in universally acceptable BP’s. What remains as a possibility is the 

discovery of new primitives, which brings us to the question of approximately 

how many primitives exist. It should be noted that some notions counted as 

“primitives” in this chapter are not primitive in a mathematical, “axiomatic” 

sense. For instance, the midpoint of a line segment could be defined on the basis 

of its two endpoints, and the equality of lengths of two subsegments of the given 

segment. But it is “primitive enough”, in the sense that when people perceive it 

they do not think of it as definable in terms of other notions they already know. 

All such notions are considered “primitive” in the present text, even if they entail 

some redundancy. 

A supposition in this thesis is that the set of visual primitives that can be 

expressed in BP’s is large — probably of the order of a few hundred. The 

magnitude of this set generates the feeling that the possibilities in the domain are 

endless. Since each BP usually does not depict exactly one primitive but is an 

elaboration, or a combination of a few, the number of BP’s that are original 

enough to surprise the solver is, perhaps, of the order of a few thousand. But 

beyond some point there is bound to be repetition, recycling, and recombination 

of old ideas, once the set of all primitives is exhausted. 

That the set of primitives is large explains why no attempt is made in the 

present thesis to list them exhaustively. For many entries on such a list, the 

decision of whether they constitute primitives or not would be subjective. In 

addition, the magnitude of this set also suggests that an attempt to implement its 
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members exhaustively would be the wrong approach. Instead, only a few 

representative members of each category of primitives (features, objects, 

relations, and quantifiers) have been selected and implemented in the current 

version of Phaeaco. 

7.6 Summary 

The principles by which Phaeaco constructs representations were introduced in 

this chapter. Representations consist of nodes linked to each other in a structured, 

nearly hierarchical manner that reflects the corresponding hierarchy of levels of 

detail of the represented object. Some representational characteristics, such as the 

notion of activation, as well as some representational primitives, such as the 

numerosity of objects, were discussed in detail. Other primitives were briefly 

introduced, broadly categorized as objects, features, relations, and quantifiers. But 

just as data structures are not very attractive in computer programming unless 

supplied with operations that act on them, so representational structures are not 

very useful in a cognitive architecture unless accompanied by a “calculus” that 

operates on them in some useful way. The next chapter addresses this issue. 

 



    

CHAPTER  EIGHT 

Visual Patterns 
8 Visual Patterns 

The representations introduced in the previous chapter become “functional” in the 

present one. First, the motivational problem of forming “lumps” (groups) of 

similar items within a population is presented. Next, a general matching method is 

offered that, given any two items represented as discussed in chapter 7, returns a 

real number that stands for the “perceptual difference” between the items. This 

difference is then used as a metric to solve the problem of “lumping” by assigning 

each item to some group, or category. The number and identity of the formed 

categories depends on contextual pressures. Finally, the formation of a visual 

pattern in each such category is discussed. 

8.1 Motivation 

Consider the three examples of visual input given in Figure 8.1. 

 
(a) (b) (c)

Figure 8.1: Three examples of “lumping”: by location (a), by feature value (b), and by shape (c) 
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When presented with one of the examples shown in Figure 8.1, we can place 

the objects into groups by “lumping” them together. In some cases this lumping is 

purely automatic and unavoidable, as in Figure 8.1a, in which the locations of the 

objects (dots) cause us to see two groups. In other cases, a minimum of effort is 

required, as in Figure 8.1b, where two groups are formed according to the size of 

the objects (large and small squares). Interestingly, the ease of group separation 

can be modulated by varying the “statistical distance” between the two samples, 

which depends both on the absolute difference of the two means (mean area of 

large and small squares), and on the variance of each sample (the larger the 

variance, the harder it is to identify the groups). Finally, Figure 8.1c gives an 

example of group formation based on the shape of the objects (squares and 

circles). In this case it is the structural properties of the given items that matter. 

The problem of group formation appears to be fundamental in perception. In 

§8.4 it will be argued that this is the most essential problem cognitive agents must 

solve before they can “understand” anything at all in their environment. Only by 

solving this problem we can perceive “objects” in the world (more in §8.4; for 

now, note that we see “two swarms of bees” in Figure 8.1a, rather than “bees” in 

random locations). At the core of the solution of this problem must be some 

procedure that allows us to compare the given items and determine how different, 

or “distant” (either literally or abstractly) they are. The procedure, called “pattern-

matching” in the present text, is part of a more elaborate algorithm that allows us 

to form both mental categories of items and a summary representation for each 

category: a “visual pattern” (§8.3). Once a visual pattern is formed, we are able to 

determine with some confidence how plausible it is that a given new item belongs 

to the category. It will be argued at the end of this chapter that pattern-matching 
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stands at the foundation of a more general mechanism that Hofstadter calls 

“analogy-making”. 

How can a system like Phaeaco, which exists in the realm of “programmed 

cognition” (§4.3, see also Figure 4.9), achieve the “same thing” as we do, i.e., 

lump items into groups? The rest of this chapter explains Phaeaco’s approach. 

8.2 Pattern-matching 

The algorithm presented in this section accepts any two representations (as 

described in chapter 7), and outputs a real number in the interval [0, 1] that 

indicates how well the two representations “match”, i.e., how similar they are. It 

is now appropriate to use the term “exemplar” to refer to the structures of chapter 

7, and to reserve the term “representation” for something that is either an 

exemplar or a “pattern”. The latter term is introduced in §8.3 to refer to 

representations that are statistical summaries of exemplars. Thus, “representation 

matching” would be a more suitable term for the main algorithm of the present 

chapter, because its inputs are representations in general (either exemplars or 

patterns). However, the term “pattern-matching” is easier to understand because it 

has been used extensively in the literature, so it will be used instead. 

An issue that must be addressed before the algorithm is presented is what 

triggers the algorithm to run. When are two representations matched against each 

other? The answer is that the algorithm is activated probabilistically when two or 

more representations exist under the same context; and the larger the number of 

items, the higher the probability that the algorithm will run. For example, a BP 

side contains six boxes, which is a number large enough to result in a very high 

probability that the algorithm will run with pairs of representations of boxes as 
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input.54 Also, any of the examples (a)–(c) of Figure 8.1 will almost certainly cause 

the algorithm to run. Even if there are only two items in a group, they can be 

matched, but in the absence of any pressure there is a nonzero probability that this 

might not happen. The probabilistic start of the algorithm is implemented with a 

codelet that monitors the appearance of a high numerosity of “objects” — the 

same codelet that was mentioned in the context of the for-all quantifier (§7.4.10). 

The description of the algorithm that follows proceeds in a bottom-up fashion: 

it begins with feature nodes, and later continues with entire structures of the two 

matched representations. 

8.2.1 Matching feature nodes 
Suppose two feature nodes f1 and f2 of the same type (excluding numerosity) are 

given. Suppose further that the field “N” of each of f1 and f2 (described as 

“number of observations” in Table 7.1) has value 1 (i.e., each of the two features 

has been seen only once, as is the case of any exemplar representation built from a 

single observation, as described in chapter 7). Then the distance between f1 and f2 

is the absolute value of the difference between their corresponding fields labeled 

as “mean” (also described as “average value of sample data” in Table 7.1), 

divided by the maximum value a feature of this type can acquire. The last 

operation has a scaling effect, so that the distance is always a number in [0, 1]. 

For example, if the feature type is “length”, the maximum value is the length of 

the main diagonal of the visual box; if the feature type is “angle”, the maximum 

value is 180°; if it is “slope”, the maximum value is 100%; in general, each 

primitive feature type “knows” what its maximum allowed value is. The result is 

 
54  Note that in this case Phaeaco does not rely on probabilities, “knowing” that the representations 
of the six boxes must be matched; in other words, the algorithm runs with probability 1, because 
Phaeaco “knows” what a Bongard problem is and what to do with it. 
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summarized in Equation 8.1, where  and are the values of the field “mean” of 

f  and f , respectively, and 1 2 is the maximum possible value of feature f. 

 

Equation 8.1: Distance d of two features with sample size 1 (two exemplars) 

If the field “N” of feature f  is equal to 1, but the field “N” of feature f  is 

greater than 1 (i.e., f  is part of a pattern, to be explained in §8.3), then the 

distance d between the two features is equal to the probability that f  comes from 

a different population than the one described by the statistical sample of f . 

Computing this probability is elementary statistics. Phaeaco uses the Student’s t 

distribution (Equation 8.2). 
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Equation 8.2: Distance d of a feature f2 of sample size N from a feature f1 of an exemplar 

In Equation 8.2, 1x  is the field “mean” of f1, and 2x is the “mean” of f2, which 

is of sample size N and deviation s. The integral55 in the numerator returns the 

area under the curve of Student’s t distribution, and the integral in the 

denominator is a constant depending on N such that the total area under the curve 

is 1. 

Finally, suppose the fields “N” of both features f1 and f2 are greater than 1 

(i.e., both f1 and f2 are parts of corresponding patterns — see §8.3). Then the 
                                                 
55  Gauss–Legendre numerical integration is used to evaluate integrals in constant time. 
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distance d between f1 and f2 is equal to the probability that the populations 

described by the statistical samples of f1 and f2 are different. To express this in 

formulas, assume f1 has mean value 1x , standard deviation s1, and sample size N1; 

and f2 has mean value 2x , standard deviation s2, and sample size N2. Then the 

desired probability is found by substituting in Equation 8.2 the values of N and t 

given in Equation 8.3. 
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Equation 8.3: Values to substitute for N and t in Equation 8.2 for the distance between two 
features f1 and f2, with statistics 1x , s1, N1, and 2x , s2, N2, respectively 

N in Equation 8.3 is the “degrees of freedom” of the Student’s t distribution, 

and t is a “standardized t-statistic”. 

8.2.2 Matching numerosity nodes 
The equations given in §8.2.1 concern feature nodes that are not numerosity 

nodes. If the nodes are of type “numerosity”, then the formulas are different, but 

the general idea is the same as in §8.2.1. Specifically, a distance is computed 

again by comparing samples from Gaussian-like populations. Recall that the 

representation of a number in Phaeaco, according to the accumulator metaphor 

(§7.3.2), is a Gaussian, given in Equation 7.3. The method of comparing two 

numbers was given as an algorithm in §7.3.2, where it was noted that, if the two 

numbers to be compared are L and S (for “Large” and “Small”), then their 

standard deviations are σL = σ0 L  and σS = σ0 S , respectively, where σ0 is some 

constant. Then their distance d is the probability that the populations described by 

the Gaussians N(L, σL), and N(S, σS) are indeed different. Suppose the two values 
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L and S have been observed only once (i.e., their field “N” in Table 7.1 is 1). Then 

d is computed by the following formula. 
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Equation 8.4: Distance d given two numerosity values L and S that have been observed once 

Equation 8.4 is analogous to Equation 8.1: it tells us how to compute the 

distance between two numerosity values that have been observed once. Formulas 

analogous to equations 8.2 and 8.3 for numerosity values with a statistical sample 

of size greater than 1 are given below. To avoid any possible confusion, note that 

the notion of numerosity is associated with the idea of a “statistic” in two different 

ways: implicitly, through the accumulator metaphor and the resulting Gaussian 

spread of the perceived numerosity value around the “correct” number; and 

explicitly, because each numerosity node is also of type “feature” in Phaeaco’s 

ontology, so that it includes the fields of Table 7.1. Examples of how the statistics 

of numerosity can be collected explicitly would be to let the system perceive a 

sequence of groups of dots (similar to those in Figure 8.1a), each group consisting 

of a different number of dots; or to be exposed to a sequence of different polygons 

— heptagons, octagons, nonagons, etc. — noticing the numerosity of their sides, 

or vertices. In such cases the field “N” (“number of occurrences”) of the 

numerosity value is greater than 1, and all other fields (“mean”, “var”, etc.) in 

Table 7.1 are updated. 

There is a formula analogous to Equation 8.2 for computing the distance 

between two numerosity nodes, one of which has been observed only once (hence 

its accumulator-generated Gaussian has mean M and standard deviation σ0 M ), 

and the other is a statistical sample of size N2 > 1. Recall that the sum of variables 
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from a Gaussian distribution is again a Gaussian (§7.3.2), so denote the mean of 

the second numerosity node by 2x and its standard deviation by s2. The formula is 

similar to Equation 8.4, except that the standardized variable z is as follows: 
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Equation 8.5: Value of z to use in Equation 8.4 for numerosity values one of which is observed 
once (an exemplar), and the other N2 > 1 times (a pattern) 

Similarly, the formula for numerosity nodes both of which are samples of size 

greater than 1 (i.e., two patterns, analogous to Equation 8.3) is similar to Equation 

8.4, except that the standardized variable z is given by the following formula: 
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Equation 8.6: Value of z to use in Equation 8.4 for numerosity values of two patterns 

The parameters in Equation 8.6 ( 1x , 2x , etc.) are assumed to have their 

obvious meanings. 

8.2.3 Combining feature differences; contextual effects 
The formulas in §8.2.1 and §8.2.2 indicate how to compute the difference 

between two feature nodes in isolation (e.g., two slopes), but they do not explain 

how to combine the features shared by an object. For example, suppose that two 

straight line segments are compared, hence their representing λ-nodes must be 

matched with each other. Each line segment has several features: slope, length, 

etc. Given the difference d1 between the two slopes, and also the difference d2 
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between the two lengt s, and so on, how do we combine ese differences to 

arrive at a single value d that will denote the overall differen e between the two 

line segments? Figure 8 2 depicts such an example.56 
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“Platonic slope” in LTM has a significance value wi that, as will be explained in 

chapter 9, consists of two parts: a relatively permanent long-term significance 

(that represents how important the abstract notion “slope” is for the system), and a 

relatively temporary activation value (that corresponds to how much the notion 

“slope” has been primed at the current moment). Both the permanent significance 

and the temporary activation are added and result in a value for wi. Given that 

each di is a number in [0, 1], it follows easily from Equation 8.7 that d is also a 

number in [0, 1]. 

If the i-th feature is missing from one of the two representations (e.g., because 

the corresponding codelet was not given a chance to run and add the feature in the 

representation), then the value of di is assumed to be 0 (i.e., the feature is 

ignored). 

The role of the wi’s is fundamental in how the context determines the notion 

of psychological distance. Recall that each wi is not restricted to [0, 1], but can 

take on any non-negative value. Thus, if one of the features is highly primed in 

LTM, its high wi (relative to the rest) can cause the comparison to be made 

essentially solely on the basis of this feature, all other features contributing a 

negligible amount in the calculation of d. For example, consider the display in 

Figure 8.3, in which there are several polygons with a variety of features: they can 

be differentiated according to their number of sides, texture (outlined or filled), 

size, line width, or any other of their features. Suppose that Phaeaco “wants” to 

concentrate on the notion “texture”, and that, by doing so, the activation of its 

Platonic idea “texture” in LTM is increased so much that its significance (wi) 

dwarfs all other possible features. Then two objects with the same texture would 

be judged as practically “the same” (d ≈ 0), whereas two objects with different 

textures would appear as different as two objects can be (d ≈ 1). In this way the 
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stage is set for two groups to be formed, one with filled and another with outlined 

objects. The mechanics of how to use d to form the groups is explained in §8.3.  

 
Figure 8.3: Objects with a variety of features 

Similarly, by shifting the focus of attention to different features and activating 

their Platonic representations, other group formations are possible from the same 

input. Note that the described contextual group-formation does not attempt to 

model the human ability to see, e.g., the filled objects “popping out”, which is 

probably related to lower-level, retinal processing properties (Treisman, 1980). 

8.2.4 Matching entire structures 
The formulas in §§8.2.1–8.2.3 correspond to the “base case” of a recursive 

procedure. When the representations to be matched do not consist of a single node 

of type “feature” but of an entire structure (such as those depicted in several of the 

figures in chapter 7), then the recursive part of the algorithm is invoked. 

Nonetheless, the word “recursive” at Phaeaco’s cognitive level is not identical in 

meaning with the same word as used in mathematics and computer science. An 

example of a high-level analogy will clarify the difference. 

Suppose an analogy is being made between the governments of two nations, 

the U.S.A. and Germany. The American president might be mapped onto the 

German president, but given that the former is the chief executive of the 
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government whereas the latter’s role is head of state rather than head of 

government, a mapping between the American president and the German 

chancellor might appear more appropriate. Next, one would have to select the best 

matches for the American vice president and secretary of state, the German vice 

chancellor, who also acts as the chief executive for Foreign Affairs, the American 

House of Representatives and the Senate, the German Bundestag and Bundesrat, 

the roles of various ministers, and so on. Generally, the analogy would be far 

from perfect, and different mappings might be considered in an attempt to find the 

best overall match. Though the final matching value would be subjective, most 

people would feel comfortable with and agree on some mappings, while 

disagreeing on others. 

The analogy is usually constructed by proceeding in a top-down fashion: we 

feel we have to start with the most “important” government members and 

structures first (their importance being understood according to the impact their 

decisions have on people’s lives), and then proceed to less important people or 

committees, if at all. The last qualification is important: we do not proceed 

blindly, mapping the two ministers of agriculture to each other if we have failed 

to find a good match at the level of president and chancellor. Also, we proceed 

with mappings at less important positions (“recursively”) only up to some point, 

beyond which any further mappings apparently cannot have a significant effect on 

our overall “feeling” of how good the match is. Finally, although each particular 

person in a government possesses a substructure consisting of many levels (head, 

body, arms, and legs, each being a structure in itself), we feel it is absurd to 

match, for example, the American president’s nose with the German chancellor’s 

nose; or to entertain for a moment a match between the nose of a person and the 

left eye of another, and upon failing, to consider next the right eye, and so on. 
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Yet, in spite of the absurdity of this suggestion, there exist computer models of 

analogy-making that employ precisely such mechanisms of blind mappings and 

recursive searches to find the best possible match between two structures, such as 

ACME (Holyoak and Thagard, 1995), and SME (Gentner, 1983). Some of these 

models have even been designed with a neural network architecture, as if the 

fundamental problem of answering how an analogy is identified has been solved, 

and so all that remains is to show how neurons can come onto the stage and effect 

an implementation of the theory, “proving” that analogy-making, after all, is 

possible in agents that compute with neurons. (For a review of the pitfalls of such 

approaches, see Hofstadter, 1995b.) 

Phaeaco, in contrast, although engaging in the humbler pursuit of visual 

pattern-matching, places some limits on the degree of recursion allowed by its 

algorithm. For example, why does matching noses and ears of presidents seem so 

utterly irrelevant for the purpose of deciding the structural goodness of a match 

between two governments? The answer is that in Phaeaco’s approach bodily parts 

belong to a different level of organization, and the mixing of levels is what 

imparts absurdity to such matching attempts. The notion of “different level” in 

this example arises from the observation that the idea “human being, person” 

forms a well-understood category; therefore, when two people are given, we 

already know they “match” with each other as members of the same category, so 

we do not need to move “down” into the category level, and examine how well 

two people match structurally. The move from the category “government” to the 

category “person” implies a change of similarity criteria (from “importance and 

role in government”, to “physical similarity of bodily parts”), and this is the main 

reason why the mixing of levels appears incongruous. 
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Another mechanism that prevents deep recursion in Phaeaco is, as was hinted 

above, an application of the notion of “diminishing returns”. Representations, as 

introduced in chapter 7, possess to a large extent a hierarchical structure. For 

example, a visual box can contain some groups of objects, with each group made 

of individual objects, each object made of lines, vertices, curves, etc. Although 

the structure is not a tree but a graph, it closely approximates a tree. Thus, the 

pattern-matching algorithm starts at what appears as the “root” of this tree-like 

structure (for example, it could be the node of the visual box, if a match is 

attempted between two boxes of a BP), and proceeds to the subparts of the 

structure. Each “downward” step along nodes that are accessible from the top 

node increases substantially a quantity that registers the depth the process has 

reached, taking into account the relative importance of the visited nodes. Two or 

three recursive steps “down” are usually enough to discourage the algorithm from 

proceeding any further into the structure. Thus, “deep recursion” is ruled out in 

Phaeaco  more than on way. 
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nodes shown in the figure. Observe that in finding the best match for a λ-node on 

the left-hand structure, Phaeaco will compute its difference with each λ-node on 

the right-hand structure before choosing the best match; then it will proceed to the 

next λ-node on the left, and so on. Even this seemingly “computeristic” point of 

the algorithm, however, is only of order O(n·m), where n and m are the numbers 

of compared nodes of the left and right structures — which is not comparable to 

an exponential explosion. 

After discovering the best matches, the algorithm can also record which 

elements of one structure correspond to which elements of another. This will be 

useful later, when Phaeaco is building the average pattern of a category (§8.3.3). 

8.2.5 Using difference to compute similarity 
Once a value of difference d is computed as explained in the previous subsections, 

a measure of similarity s can be obtained via the following transformation: 

des −=  
Equation 8.8: similarity as a function of difference 

Since the value of d in Equation 8.8 is in the range [0, 1], it follows that the 

value of s is in the range [1/e, 1], where 1 stands for “identity”, and 1/e ≈ 0.37 for 

“minimum similarity”. Although a value such as 1/e appears to destroy the 

elegance of the range for differences, [0, 1], note that any choice of range is, after 

all, arbitrary. Future extensions of the architecture beyond the BP domain might 

require extending these limits as well (e.g., to “even less similarity” than 1/e). 

Equation 8.8 is employed merely for compliance with the Generalized Context 

Model (§6.1.4). 
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8.3 Group and pattern formation 

Equipped with a similarity measure for representations, we can now proceed to 

solve the fundamental problems of identifying groups of objects, and forming a 

summary representation (a “visual pattern” in Phaeaco’s terminology, or “pattern” 

for simplicity) for each group. It is best to do this by considering a concrete 

example: the quintessential group-identification BP, already presented in §0 

(Figure 2.9, BP #166), a single box of which is shown in Figure 8.5. 

 
Figure 8.5: One of the boxes of BP #166, exemplifying group formation 

It is desirable to have an algorithm that, given the input box shown in Figure 

8.5, discovers two groups of objects (dots), and builds them incrementally, as the 

dots are “seen” one by one (i.e., as their representations are built in Workspace 

one by one). This is an absolute requirement: in Phaeaco’s fashion of processing 

input, it is not possible to wait until all objects become available before 

manipulating them, because it is not known when an “end of input” will be 

detected. For this reason, all processing algorithms in Phaeaco start working as 

soon as the first data on which they can work become available. Nonetheless, this 

requirement — which is dictated to Phaeaco by its architectural constraints — 

does not imply that human cognition, too, always groups entities sequentially and 

incrementally. The dots in Figure 8.5, for example, are probably processed in 

parallel by the hardware of our retinas and visual cortex, whereas the process of 
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learning the stereotypical behavior of people belonging to a particular culture 

might take a person years or even decades, so it can be reasonably assumed to be 

achieved incrementally, without having immediate access to the entire set of data. 

This observation, as we shall see in the subsections that follow, permits some 

freedom concerning the kinds of algorithms that can be assumed “admissible” (in 

a sense that will be explained shortly) for a cognitive agent. 

8.3.1 Background from computer science 
The requirement that the group-formation algorithm be incremental immediately 

disqualifies a number of methods used in computer science in the field of data 

mining, in which algorithms often build groups after all data have been collected, 

and the number of desired groups is given as a parameter (for a review, see Jain, 

Murty et al., 1999). The notion of unsupervised group-formation in data mining is 

usually called “clustering”. Some non-incremental or supervised algorithms (e.g., 

“k-nearest neighbors”) can perform optimally because they benefit from the re-

examination of the input, but they are hard to reconcile with cognitive 

mechanisms, which clearly do not store data in large arrays, scan them multiple 

times, and store intermediate results in other data structures, nor do they receive 

supervision from an “oracle” that knows the classification of a subset of the data. 

An additional requirement that disqualifies a large class of algorithms is that 

there can be no parameter such as “desired number of groups” that is known in 

advance; clearly, in cognitive tasks the number of groups is one of the features 

that must be identified. Thus, clustering algorithms such as “k-means” (McQueen, 

1967) and its variants are cognitively implausible. Despite its implausibility, 

however, the simplicity of k-means makes it useful as one of the standards against 

which Phaeaco’s algorithm is compared in §8.3.4. 
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Incremental algorithms usually perform in linear time with respect to the size 

of the input (i.e., they are O(n) where n is the size of the input),57 but their 

performance is sub-optimal. There are even some incremental, linear-time, and 

optimal algorithms, but which are inappropriate in cognitive science because they 

are based on ad hoc heuristics and the setting of a large number of parameters. An 

extreme example of the use of heuristics is an algorithm known as “ISODATA” 

(Ball and Hall, 1965), that manages to perform optimally and in linear time, but is 

so complicated that it is safe to say that it exists only as a module in certain 

FORTRAN libraries of clustering and data mining routines. An additional 

problem for algorithms packed with heuristics is that often their advantages can 

be exploited only when the size of the input is large (e.g., on the order of 

thousands). The reason for this is that heuristics often require an initial 

computational overhead that imposes a significant burden if the size of the input 

is small. Cognitive systems, by contrast, often have to form categories on the 

basis of a very small number of examples, as in Figure 8.5. 

8.3.2 Phaeaco’s group-formation algorithm 
Phaeaco’s algorithm accepts as input a set of “exemplars” (for example, they 

could be the set of dots shown in Figure 8.5, or entire representational structures 

such as those presented in chapter 7), declared as a parameter of type “queue” in 

Figure 8.6, to emphasize the idea that a single scan of the exemplars is enforced. 

The algorithm constructs and outputs a set of “patterns”, each of which is a 

statistical summary of a group formed by the exemplars. The algorithm is also 

called “Patterns”, for lack of a more suitable one-word mnemonic. 

 
57  In contrast, non-incremental algorithms are usually O(p(n)), where p(n) is a polynomial of 
degree n ≥ 2, because they scan the input repeatedly. 
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Algorithm Patterns (queue exemplars) 
set patterns ← empty 
set known-exemplars ← empty 
for each exi in exemplars do the following 

if exi is not Similar to one of patterns then 
real max-similarity = 0 
pattern closest ← null 
for each exj in known-exemplars do the following 

real similarity = Match (exj, exi) 
if similarity > max-similarity then 

max-similarity ← similarity 
closest ← exj 

if max-similarity > clustering-threshold 
pattern new-pattern ← Form Pattern out of closest and exj 
if new-pattern Resembles one of patterns then 

discard new-pattern 
else 

Add new-pattern to patterns 
Remove closest from known-exemplars 

Add exi to known-exemplars 
output the Union of patterns and known-exemplars 

 
Figure 8.6: Phaeaco’s basic group-formation algorithm 

The notation used as pseudo-code in the algorithm of Figure 8.6 should be 

self-explanatory: indentation signifies blocks of code in the usual programming 

convention, keywords of the hypothetical language are shown in bold type, 

identifiers (variables) in italics, types of identifiers in bold italics, and calls to sub-

algorithms (to be discussed below) in regular type, but capitalized. 

The algorithm starts by first initializing its output set of patterns and a local 

set of “known exemplars” to the empty set. Each input exemplar is compared 

against each pattern in the current set of patterns. If it is not “similar enough” (this 

will be explained next) to any of the current patterns, then the following happens: 

before adding the input exemplar to the set of known exemplars, each of the 
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known exemplars is considered as a candidate to form a new pattern with the 

input exemplar. If this new pattern is really new, i.e., if it does not match well 

with any of the current patterns, then it is added to the set of patterns; otherwise it 

is simply discarded. Finally (when all input exemplars have been considered), 

whatever known exemplars have been left out (i.e., those that did not form a 

pattern with any of the input exemplars) are turned into “groups made of a single 

element”, and are added to the set of patterns. 

The meaning of the last step can be explained by the example in Figure 8.7: 

when the algorithm ends, the two isolated dots are left in “known exemplars”, so 

each can be termed trivially a “group” and added to the set of patterns. 

 
Figure 8.7: Another box from BP #166, with one group (pattern) and two isolated exemplars 

Features of the Patterns algorithm include the use of a “clustering threshold” 

and the storing of input exemplars in the temporary list of “known exemplars”. 

The clustering threshold is a parameter that can be considered as a near constant, 

but can vary slightly depending on contextual pressures: increasing its value 

decreases the “tolerance” of how different two exemplars can be before they are 

put in different groups. Storing input exemplars in the set of known exemplars 

makes this algorithm quadratic (O(n2)) — more in §8.3.4. 

The algorithm of Figure 8.6 is only the “main” procedure of an entire set of 

sub-algorithms that are explained in what follows, starting with one implied by 

the line that  reads: “if exi is not Similar to one of patterns…”. 
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Algorithm ExemplarIsSimilarToAPattern (pattern exemplar, set patterns) 
if patterns is not empty then 

real max-similarity = 0 
pattern closest-pattern ← null 
for each pattern in patterns do the following 

if pattern Resembles the exemplar then 
real similarity = Match (pattern, exemplar) 
if similarity > max-similarity then 

max-similarity ← similarity 
closest-pattern ← pattern 

if closest-pattern is not null then 
Update closest-pattern with exemplar 
return true 

return false 
 

Figure 8.8: Algorithm testing for similarity of exemplar to patterns 

The remaining sub-algorithms are straightforward: 

• To “Match” two exemplars means to compute their similarity as specified 

in §8.2, and to return the value as a real number. 

• The decision “Resembles” (which appears in both listed algorithms) is 

implemented by simply calling “Match” and testing whether the resulting 

value of similarity is greater than the clustering threshold (the same 

threshold that was used in the main procedure of Patterns). 

• Finally, the lines “Form Pattern” (out of two exemplars) in Figure 8.6, and 

“Update” (a pattern with an exemplar) in Figure 8.8, are essentially calls 

to the same sub-algorithm, which causes the exemplar to update the 

statistics of a pattern, and which merits an explanation in a subsection of 

its own. 
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8.3.3 Pattern updating 
The preceding discussion has explained how to compare either two exemplars, or 

a pattern (the statistical summary of exemplars) with an exemplar, or two patterns, 

thereby obtaining a measure of their difference, and how to use that difference to 

decide that exemplars belong to a group, represented by its corresponding pattern. 

But it has not explained how a pattern is constructed in the first place. 

The construction of a pattern out of two exemplars follows a “recursive” 

procedure carried out on the representational structure, with all the same 

disclaimers against deep and blind recursion as were expressed in §8.2.4. At the 

base of this recursion stands the statistical updating of featural nodes. 

Suppose two nodes that represent slopes of line segments that belong to 

different exemplars are given. For example, the line segments might be the left 

slanted sides of two “A” ’s, printed in two different fonts (Figure 8.9). The first 

slope might be 65%, and the second slope 75%. If we try to generalize and think 

of the two instances (exemplars) of the letter “A” as “one idea”, then we can say 

that the average slope of the left side, given only these two exemplars, is (65 + 75) 

/ 2 = 70%. A standard deviation can also be computed, and it is 652 + 752 – 2·702 

= 50% (see Equation 8.10). 

 
Figure 8.9: The letter “A” in two different fonts 

In general, if we already have a statistical sample with mean value x  and size 

N, then the formula for computing the new mean x ′  after inserting an additional 

datum x in the sample is: 
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Equation 8.9: New mean given an additional datum, old mean, and sample size 

If the old sample has standard deviation s, then the formula for computing the 

new standard deviation after inserting x in the sample uses the new mean s ′ x ′  

from Equation 8.9. It also uses the sum of squares of the sample data, which is 

denoted by Σ2 in Equation 8.10: 
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N

xNxs
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2 1 ′+−+Σ
=′  

Equation 8.10: New standard deviation given an additional datum and new mean 

The quantity Σ2 + x2 is the sum of squares of the new sample. This quantity 

makes evident the reason for keeping the sum of squares explicitly as a field in 

the statistical structure of a feature in Table 7.1: to avoid storing explicitly the 

sample data xi. Thus, for the sake of completeness, four more formulas must be 

added to show how the rest of the fields in Table 7.1 are updated after adding a 

new datum, including the new minimum and maximum value of the sample: 

1+=′ NN  
2

22 x+Σ=Σ′  

( )xMinnMi ,min=′  

( )xMaxxMa ,max=′  

Equation 8.11: New number of data, sum of squares, minimum, and maximum value 

All the equations above are easily generalized for the case where the added 

quantity is a statistical sample with N > 1, instead of a single datum. 

Thus, suppose several exemplars have been encountered, as in Figure 8.10: 
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Figure 8.10: A larger sample of input exemplars of “A” ’s in various fonts (Figure 2.2, repeated) 

Then, assuming Phaeaco has succeeded in placing them all in one group, the 

formed pattern that represents the statistical summary of the exemplars in the 

group will contain nodes for features that will correspond to the average value, 

standard deviation, etc., of the left slanting line, its average length, and so on for 

each feature of the pattern. To depict concretely something that could be the result 

of this pattern, consider the drawing in Figure 8.11. 

 
Figure 8.11: Concrete (and oversimplified) depiction of what a pattern can generate 

Observe, however, that Figure 8.11 is only a rough approximation of what 

could be generated from the true structure of the pattern stored in Phaeaco’s 

memory. The pattern itself is nothing like a “template bitmap” (as might be 

erroneously inferred from Figure 8.11), but has the structure of a representation, 

similar to the structures of chapter 7, except that its featural nodes are full 

statistical samples with the structure of Table 7.1. (A pattern for something like 

the letter “A” is too complicated a structure to be depicted in a single page of this 

thesis.) 

If the statistics of the pattern are updated by the equations given earlier, then 

how is the representational structure of the pattern constructed? Even in a case as 

seemingly simple as two exemplars of the letter “A”, a question arises about how 
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small structural discrepancies are to be summarized in the pattern. For example, 

serifs might be present in some of the “A” ’s but absent in others, as in Figure 

8.10. Should the pattern include serifs in its structure, or not?58 

The answer in Phaeaco’s architecture is literally “yes and no”. This equivocal 

result is achieved by modifying an element of representational structures that has 

not been mentioned yet: the strength of links between nodes. Links in patterns 

have strengths that exactly follow the rules for how activations increase and 

decrease their values, as described in §7.2. 

The idea is simple: when a new structural element (such as a serif ) is 

encountered, the element is linked into the structure of the pattern, but the 

strength of its link is weak. Each new exemplar that contains this element 

increases the strength of the corresponding link. As long as patterns are formed in 

the Workspace, links between nodes do not decrease; but when a pattern is copied 

to the LTM, as will be explained in the next chapter, all links can weaken (or be 

enhanced) over time, by mechanisms that are specific to the LTM. 

This observation also answers the question of what the pattern built from 

seemingly incongruous exemplars, such as a triangle and a square, would be. If 

contextual pressures dictate lumping together triangles and squares (e.g., with the 

concept “polygon” highly primed in LTM), then the structure of the pattern will 

include four λ-nodes, but these nodes will be linked in peculiar ways, representing 

the ways line segments are connected in both a triangle and a square; additionally, 

some link strengths will be weaker than others. 

 
58  No attempt is made here to propose a pattern structure that would represent artistic designs of 
the letter “A” that do not consist of three lines, possibly with some serifs (i.e., typically in Times 
Roman font). For a treatment of this topic see the Letter Spirit project (Rehling, 2001). 
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8.3.4 Comparison of algorithms 
To ascertain that the Patterns algorithm is not deficient in comparison with other 

known clustering algorithms, its performance was measured against three 

algorithms that are at least as easy to implement: 

• The “k-means” algorithm (McQueen, 1967): 

1. Initialize the first k clusters with random exemplars from the input. 

2. Distribute the exemplars among the present clusters; in the process, 

update the cluster centers. 

• The “leader” algorithm (Hartigan, 1975): 

1. Assign the first exemplar to the first cluster. 

2. Assign the next exemplar to the most similar cluster, or create a 

new cluster if the similarity exceeds a given threshold. 

3. Repeat step 2 until all exemplars have been assigned to a cluster. 

• The “Lu and Fu” algorithm (Lu and Fu, 1978): 

1. Given the current exemplar, assign it to the cluster that includes the 

exemplar that is closest to the given one. 

2. If the similarity of the closest exemplar exceeds a given threshold, 

then create a new category for the current exemplar. 

3. Repeat step 1 until all exemplars have been assigned to a cluster. 

The first two algorithms do not store the input exemplars for re-examination, 

whereas the third one, like Patterns, stores exemplars and re-examines them. The 

algorithms were tested on a variety of clustering cases, varying the number of 

clusters, the number and density of exemplars in each cluster, and the distance 

among clusters (how well separated they were). Exemplars were real numbers in 

[0, 1]. A “performance index” was established to automatically assign a grade of 
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success to each run of each algorithm, with values in the range [0, 100], with 100 

meaning “perfect success”. It was possible to compute this index automatically 

because the tested exemplars were always forming groups unambiguously. For 

those algorithms requiring a clustering threshold (i.e., all except k-means), the 

value of the threshold at which the algorithm performs best was selected. The 

results are shown in Table 8.1. 

 

Algorithm 

Performance 

index (0–100) 

Standard 

deviation

Clustering 

threshold 

Threshold 

tolerance 

Patterns 98.5 7 0.83 0.78–0.88 

leader 92.9 16 0.82 0.78–0.85 

Lu & Fu 78.8 28 0.85 0.81–0.88 

k-means 54.7 36 — — 

Table 8.1: Comparison of algorithmic performance 

The performance index was averaged over a large number of runs, so the third 

column gives the standard deviation of the sample of measured indices. All three 

algorithms that include a clustering threshold showed some tolerance to the value 

of their threshold, which means that the specific (best) value listed in column 

“Clustering threshold” is not crucial for the algorithm to perform well. 

Further tests in speed and memory usage showed empirically what was 

expected theoretically: the leader and k-means algorithms are the fastest and use 

the least memory among the four, since they perform a single pass over the input 

exemplars. Apparently, they achieve this at the expense of performance. 

(Nonetheless, the performance of leader is only very slightly inferior to that of 

Patterns.) The speed and memory results are summarized in Table 8.2. 
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Algorithm Speed Memory

k-means 0.38 O(n) 

leader 0.49 O(n) 

Patterns 0.92 O(n2) 

Lu & Fu 1.38 O(n2) 

Table 8.2: Comparison of algorithmic speed and memory requirements 

The values shown in the “Speed” column of Table 8.2 are in milliseconds 

averaged over 6000 repetitions, but these numbers have only relative, rather than 

absolute, significance. 

Overall, the Patterns algorithm compares favorably in performance with the 

other three algorithms, although it achieves this at a sacrifice of speed and 

memory in comparison to the leader algorithm. However, the observed sacrifice 

occurs only when a large number of exemplars must be clustered quickly, which 

usually is a requirement in computer science applications. Cognitive 

categorization tasks are usually slow when they are sequential (nobody asks 

people to cluster thousands of items in seconds), or fast when parallel, as in the 

example of dot-grouping in Figure 8.5. In the latter case, Phaeaco, with its low-

order polynomial-time algorithm (O(n2)), implemented on a sequential processor, 

is “competing” against our human neurally-implemented parallel mechanism. 

This is not a handicap from the point of view of the theory of computational 

complexity, according to which a parallel algorithm of constant time can at best 

be of polynomial (linear) time if implemented sequentially (e.g., Papadimitriou, 

1994, p. 139). 
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8.4 Pattern matching as the core of analogy making 

Every scientific discipline has its “core” or “founding principles”, and until such 

principles are spelled out explicitly and become widely accepted by the 

practitioners in the field, the field is considered insufficiently scientific, a mixture 

of art and science. For example, among the founding principles of physics are 

Galileo’s and Newton’s laws of motion; in chemistry, Dalton’s atomic theory and 

Mendeleev’s construction of the periodic table of elements; in biology, Hooke’s 

discovery of cells (and coinage of the word), Darwin’s theory of evolution by 

natural selection, and Watson and Crick’s discovery of the structure of the DNA 

molecule; in cosmology, Hubble’s discovery of the expansion of the universe and 

the subsequent Big Bang theory; in mathematics — if we interpret the notion 

“science” in a broader sense — the axiomatic method, systematized by Euclid; 

and so on. But what are the founding principles of cognitive science? 

Many cognitive scientists have attempted to discover the “core” of their field, 

but not all such attempts can be regarded as successful. In the 1970’s and early 

1980’s, when the term “cognitive science” was not yet in common use (and when 

most of the related work was done under either cognitive psychology or artificial 

intelligence — two mutually non-communicating fields), some researchers 

proposed that “problem solving”, and searches through exponentially large spaces 

with the use of heuristics, are fundamental. It soon became evident, though, that 

these are principles for building computer systems that can solve only in an 

alternative, computeristic way problems traditionally tackled by human minds. 

This idea may be said to have culminated with the construction of the chess-

playing program Deep Blue and its win over the human world chess champion 

(see more in §4.4.2). Such methods, however, have little or no relation to 

cognitive principles. At the same time there was strong support for the idea that 
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mathematical logic is at the core of the cognitive engine of every intelligent agent, 

and the repercussions of this view can still be felt in various publications and 

research programs. Nonetheless, the view that this assumption is erroneous, and 

that the predicate calculus is an epiphenomenon of human cognition rather than a 

foundational “pillar” has already been expressed in this text (§7.4.10). 

The 1990’s saw a resurgence of research in artificial neural networks, and — 

helped by discoveries of techniques in exploring the blood flow in the human 

brain — a wealth of observations of areas of the brain while it engages in various 

cognitive tasks. Although no one can deny that human cognition is ultimately 

based on neural mechanisms, it is questionable whether neurons constitute the 

sole and ultimate “currency unit” of cognition. The primary subject of cognition is 

not the brain, but the mind. (Not even specifically the human mind, but the Mind, 

abstractly.) Brains are the biological organs that evolution selected in animals to 

cope with properties of their environment. But brains (and neurons) do not 

necessarily imply minds. For example, chickens have brains, too, but their 

cognitive abilities are not exactly at the cutting edge of research in cognitive 

science. Not even the quantity of neurons qualifies as what makes the difference 

between full human intelligence and its approximations: whales, most dolphins, 

and elephants, all have more neurons in their brains than do humans, but their 

cognitive abilities are at the level described in psychology as “animal cognition”. 

Also, mentally retarded humans, though significantly more intelligent than any 

animal species, are incapable of serving as examples of an average human mind. 
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No neurobiologist is yet in a position to tell which brain belonged to a mentally 

retarded person and which to a genius after a postmortem examination.59 

One of the fundamental tacit assumptions in cognitive science has been that 

cognition can be described abstractly as a set of principles, and is implementable 

in ways other than the only example of which we are aware, i.e., in biological, 

neural hardware. Thus, even though neurons are sufficient for minds, they are not 

necessarily necessary. If cognitive scientists did not hold this belief, much of the 

motivation for building intelligent machines would not be justified. 

Thus, neurons are the building blocks of a complex system (brain) that gives 

rise to the subject of cognitive science but is not the subject of it; it is the subject 

of a related discipline (neurobiology). Research on the computeristic counterparts 

of neurons (artificial neural networks, or ANN’s) represents efforts to show that 

some specific cognitive problems are solvable within the particular framework of 

ANN’s, implying that they are also solvable in the framework of real neurons 

(which we already know), and that possibly they are also solved in the same way 

by neurons (which is at best a conjecture). But research in ANN’s does not 

necessarily address the core principles of cognition. ANN’s might, for all we 

know, be an attempt to work in cognition at the wrong level, akin to trying to 

understand biological principles in terms of simulated chemical reactions.60 

There has been a different idea for what stands at the foundation of cognition. 

According to this idea, championed most notably by Hofstadter since the early 

1980’s, the core of cognition is “analogy-making”. Most people — cognitive 

scientists and laypeople alike — upon hearing this term, recall salient examples of 
 

59  Certain conditions, such as Down’s Syndrome, can be identified by examining characteristics 
of the DNA structure (the number of chromosomes), but this apparently is unrelated to the 
structure of the brain itself — any cell with a nucleus from the tested individual would suffice. 
60  Every good biologist needs to have a good knowledge of chemistry, but knowing chemistry 
alone does not make a good biologist. 
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analogies. For instance, scientists (but not physicists or chemists) might think “an 

atom is like a planetary system”61 is an example of an analogy. Laypeople might 

choose examples such as: “Afghanistan was the Vietnam of the Soviet Union”, or 

ones with predictive power, such as: “Iraq will turn out to be the new Vietnam for 

the U.S.” Hofstadter himself has enriched the repository of creative analogies by 

bringing up amusing examples, such as: “Cambodia is the Vietnam of Vietnam”, 

or “Dennis Thatcher is the First Lady of Britain”.62 Right… but what does all this 

have to do with the foundations of cognition? 

It turns out that when Hofstadter uses the term “analogy-making” he means it 

in a much more general and fundamental sense than the one suggested by such 

humorous examples. In particular, he would say that analogy-making is to see two 

tables (e.g., a formal, stylish, dining-room table, and a casual, kitchen-room 

table), and perceive their abstract common structure; or, to see two apples and 

perceive them as instances of the same kind of fruit; or, to see a pen and perceive 

it as “a pen”, i.e., categorize it under the already known concept of “pen”. The last 

example implies that any instance of perception and subconscious categorization 

is an instance of analogy-making, in Hofstadter’s use of the term. Indeed, in 

“Analogy as the Core of Cognition” (Hofstadter, 2001), we read: 

The process of inexact matching between prior categories and new 

things being perceived (whether those “things” are physical objects 

or bite-size events or grand sagas) is analogy-making par excellence. 

 
61  A wrong analogy, but naturally it persists in the minds of scientifically educated people, given 
the number of old physics textbooks depicting an atom as a planetary system. But given the wrong 
model, it is a great analogy. 
62  This was said at a time when the prime minister of Britain was Margaret Thatcher. 
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In Phaeaco’s terminology, this sort of analogy-making is called pattern-

matching and categorization. There is no need to define an artificial border 

between pattern-matching and analogy-making (as the latter is understood by 

most people), because there is no use that such a border can have: it is the same 

mechanism, all the way from “grand sagas” to physical objects. But in spite of its 

being the same mechanism, the use of different terms for its two “extremes” is 

justified, because it facilitates communication. An analogy will help explain the 

justification for using both terms, “pattern-matching” and “analogy-making”. 

When an atom of carbon (C) joins with four atoms of hydrogen (H) to make a 

stable molecule of methane (CH4), we say that the carbon “combined” with 

hydrogen. But when people consume a sandwich, we say they are “eating” it. 

People are not said to “combine” with their sandwich, nor is carbon said to “eat 

up” hydrogen. Yet, deep down it is the same mechanism: the process by which we 

evolved from organic molecules to complex mammals involves an astronomically 

large number of chemical exchanges.63 But even though the mechanism remained 

the same in principle, it became so complex that we feel we must reserve the verb 

“to eat” for when we consume our food, rather than use it to describe even simple 

combinations of atoms and molecules. 

The previous analogy is deeper than might be perceived at first thought. Just 

as food consumption in the world of biology has its chemical analogue in 

molecule combination, so the cognitive mechanism of analogy-making has its 

biological analogue in pattern-matching. Animal cognition varies greatly in 

 
63 Somewhere along this process (early on, presumably in the first half billion years of Earth’s 
history) organic molecules “learned” to do something that approximated replication, and then 
gradually perfected this achievement, entering the biological stage in our planet’s history. But no 
matter which stage we look at, chemical or biological, the mechanism of chemical combination or 
food acquisition — which description sounds more suitable depends on the stage — has remained 
identical throughout our evolutionary past. 
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degree, from the absolute zero of sponges, to the highest degree of which we are 

aware: the cognition of our own species. Although it is still largely a mystery 

whether animals other than humans maintain rudimentary mental representations, 

it is plausible that pattern-matching was not discovered suddenly by human 

beings, but existed at least among our lineage of ape ancestors, and probably 

among other cognitively complex animals as well. Are we to believe that when 

we see a pen we perceive it as “a pen”, or “a writing instrument”, but when lions 

see (or smell) a zebra they are unable to perceive it as “a zebra”, or “food”? It all 

depends on how complex animal representations can be. Conceivably, Skinnerian 

stimulus-and-response behaviorism has its place among creatures that appeared 

early on in evolutionary history and changed little (if at all) since, but is 

insufficient to describe the cognition of animals that developed complex cognitive 

abilities and behaviors. It is an example of anthropocentric chauvinism to suppose 

otherwise. 

In summary, our ability for analogy-making (at its best), or pattern-matching 

(at its humblest) — whatever name we give to it — is the fundamental ability of 

cognitive creatures to perceive the world and make sense out of it, by assigning 

each object to a known category; to form categories by being exposed to 

sufficiently similar objects; and even to perceive the objects themselves, which is 

a prerequisite for categorization. How do we manage to see “objects” in the 

world, rather than random collections of “pixels” sent to our visual cortex through 

the rods and cones of our retinas? We do it because some collections of “pixels”, 

due to spatial proximity (such as the dots in Figure 8.5), or proximity due to other 

features (color, texture, etc.) seem to “belong together”. By making groups out of 

what seems to belong together, we perceive “objects”. 
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Note that the use of “we” in the previous paragraph does not imply that 

objects are only an artifact of cognition. Objects must exist objectively in the 

world; animals simply evolved to perceive them, as the previous paragraphs on 

the evolution of pattern-matching and analogy-making suggest. The present work 

can be regarded as an existence proof of the proposition that minds are not 

necessary to perceive and thus verify the existence of objects. After all, Phaeaco 

can perceive them, too. 
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CHAPTER  NINE 

Long-Term Memory and Learning 
9 Long-Term Memory and Learning 

9.1 Motivation: is LTM really necessary? 

Previous FARG systems (§6.2) lack a true LTM (of the kind that is saved on a 

permanent medium, such as a computer disk, and becomes available again at the 

next instantiation of a program). Systems such as Copycat, Tabletop, and Letter 

Spirit include in their architecture the Slipnet, whose nodes become activated 

whenever information is processed and whose links shrink or expand according to 

their “elastic” nature. But when the system stops running, all activity and 

whatever modifications occurred in the Slipnet are swept from the computer’s 

memory: the next time the system is invoked, it behaves as if the previous session 

had never occurred, since the Slipnet nodes start anew with their “factory 

defaults”, to use the terminology of the software industry. Metacat includes a 

memory which is “longer term” compared to other FARG systems (though still 

not saved permanently), but its memory is organized as a database of files with 

facts regarding previous sessions, rather than as a true cognitive memory in 

Phaeaco’s sense (to be explained in this chapter). 

At least theoretically, a memory-resident Slipnet is all that is required by a 

cognitive system: every modification effected permanently on a system that 

periodically saves its Slipnet (or whatever its LTM is called) on disk can also be 

effected in an identical way if the same system undergoes the same learning 
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experiences in a single session. There is no theoretical advantage to be gained by 

temporarily suspending the operation of the system, “waking it up” some time 

later, and restoring it more-or-less to its previous state, the one that existed before 

“going to sleep”. The periodic “sleep and wake up” stages that a true LTM allows 

simply prolong the training period of the system, according to this view. 

Although there can be no valid theoretical argument against this idea, some 

practical considerations are worthy of attention. The expectation that a system 

would undergo its entire training period in a single session, and thus learn a 

significant amount of knowledge in a highly concentrated timeframe, is 

tantamount to the idea that a person could go through their childhood and years of 

formal education in a “fast forward” manner, compressing into a matter of 

minutes (the usual duration of a computer session) a significant part of many 

years of experience. It is common knowledge that the time it takes people to learn 

various subjects generally cannot be compressed significantly, but instead time 

must “take its course” until knowledge “settles”. This can be attributed to the 

slowness of the underlying hardware medium (neurons). It is conceivable that the 

advent of faster computer hardware will trivialize this practical problem, 

compressing years of experience into minutes. But some simple calculations 

suggest that this will not happen any time soon. To compress only 15 years of 

experience into 15 minutes (which is at the limits of what can be considered a 

reasonable time to wait before a program trains itself and becomes available) one 

needs a computer that runs approximately ½ million times faster than present 

ones.64 Assuming an improvement in computer speed on the order of 1.5 times 

 
64  There are 525,600 15-minute intervals in 15 years. The implicit assumption is that a computer 
would be required to undergo experiences similar to those of a person in the first 15 years of life, 
which is a moot subject. 
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per year,65 we conclude that we must wait for more than 32 years66 before 

technology grants us this wish. There must be a more practical way to train a 

computer. 

There is an additional problem. Phaeaco’s LTM has a feature lacking from all 

Slipnet-like memories of FARG projects. In addition to the “elasticity” of links 

that causes them to act like rubbery bands changing the distance between nodes, 

Phaeaco’s links can have their elasticity permanently modified, all the more so if 

they shrink and extend repeatedly. As will be explained in §9.3, it is as if the 

frequent use of memory gradually causes links not only to shrink more than 

before, but also to “harden”, making it easier for activation to spread through the 

linked nodes, and harder for the links to go back to their “factory default” length. 

These are all features of Phaeaco’s “learning” abilities (§9.5), and for them to 

have any perceivable effect on the behavior of the system, a significantly long 

time must pass, during which the system gains experience. This property of 

Phaeaco’s LTM makes it more difficult to insist that memory be updated with “a 

life’s worth of experiences” in a single training session. 

Finally, as will be explained in §9.4, the periodic sleep-and-wake-up stages 

facilitate the implementation of a form of forgetting. Forgetting can be seen as 

“culling” — allowing only the salient memories to remain accessible — which is, 

after all, another way of learning. 

 
65  This rate of improvement in hardware speed, known in the computer industry as “Moore’s law” 
(in reality a self-imposed industry marketing strategy, rather than a true law of nature), was 
already diminishing by the time the present text was written (2006). 
66  This is the number of times that 1.5 must be multiplied by itself to yield approximately ½ 
million. 
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9.2 From visual patterns to concepts 

Phaeaco’s memory is populated with visual patterns (chapter 8), which are called 

“core structures of concepts” in the context of the LTM. The reason for this 

choice of terms will become evident in §9.2.1. The change in terminology (from 

“patterns” to “concepts”) is necessary because, as will be further discussed in 

§12.1, visual memory forms the basis for the more abstract conceptual memory 

that seems to be the hallmark of human cognition. Thus, “galaxy” and “running” 

can be thought to invoke visual patterns, but “democracy” and “theory” hardly do 

so, and are better described as “concepts”. Although Phaeaco’s present 

implementation supports no more abstract concepts than visual patterns (that were 

once formed in the Workspace), the hope is that future work will use the present 

framework to move naturally into the domain of abstract concepts. Accordingly, 

the network of entities that forms the LTM in Phaeaco is not called a “Slipnet”, 

but a “conceptual network”. 

If the LTM consists of concepts, when do patterns migrate from the 

Workspace to become LTM residents and be christened “concepts” (or, more 

precisely, “core structures of concepts”)? The answer is: as soon as the visual 

input that was responsible for their creation ceases to exist. In the case of solving 

a BP, this happens as soon as the BP is solved, whereas in the case of receiving 

input from a Mentor session (§5.2), it happens as soon as the input in the 

Mentor’s box has been “seen” and a representation of it has been created. 

Patterns created in the Workspace from visual input are not simply stored in 

the LTM, adding one more resident each time, but matched against existing 

concepts, using the same mechanisms that were described in §§8.2–8.3. If the new 

pattern is found to match some LTM concept sufficiently closely, the concept is 
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simply updated with the pattern (according to the equations of §8.3.3). But if the 

pattern is different from all known LTM concepts, it will form the foundation of a 

new concept. This idea is essentially the same as the idea that groups of 

exemplars form visual patterns in the Workspace (§8.3). 

If the LTM consists of an “ocean” of concepts, there must be some practical 

way to navigate this ocean to find which concepts fairly closely match a given 

pattern (which is about to migrate to the LTM) without testing each concept in 

turn. Indeed, an indexing scheme that facilitates access to concepts in LTM will 

be outlined in §9.4.1. 

9.2.1 A slight departure from the Slipnet concept of concept 
Figure 6.3, taken from GEB, is a depiction of a portion of a Slipnet. Each node, as 

explained in §6.2.1, serves as the core of a concept, and nodes that are in close 

proximity are said to belong to the halo of that concept. 

Phaeaco’s conceptual network is slightly more complex than a Slipnet. A 

concept in Phaeaco usually has a structure, unless it is a primitive. For example, 

“triangle” is a non-primitive concept, and chapters 7 and 8 explained how the 

pattern of a triangle can be formed, and hence can migrate into LTM, either 

forming the basis for a new concept if nothing similar exists, or updating a similar 

concept. But a triangle has a structure: it is made of three line segments, among 

other parts. In Phaeaco’s LTM, each of the line segments has a node that 

corresponds to it (which is not any specific line segment drawn in a box, but “a 

line segment”, one of three that constitute a triangle). Each of these three line 

segments is a node separate from the node that represents the Platonic concept 

“line segment”, which is a more abstract idea than the notion “line segment (or 

side) of a triangle”. In Figure 6.3 there is a node for “line segment”, and a link 

that connects “triangle” and “line segment” with a relation labeled “composed 
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of ”. But how is the individuality of each of the three sides represented in a 

Slipnet? How can a single “line segment” node represent the particular way in 

which the sides of a triangle meet at three vertices, which is different from the 

way the three line segments of the letter “A” meet and touch each other? 

As the foregoing shows, the concept “triangle” in Phaeaco is not just a node 

labeled “triangle” (the core) surrounded by a loose association of proximal nodes 

(e.g., “rectangle”) that are part of its halo, but is also a structured collection of 

nodes. The notion “halo” is still valid in Phaeaco and has the same meaning as in 

a Slipnet, but the notion of “core” is modified to include not just a single node, 

but the entire collection of nodes that make up the structure of the concept. To 

avoid any possible conflict with the term “core” as used in earlier FARG systems, 

the term “core structure” will be used to refer to the structure of a concept in 

Phaeaco. 

  

 
Figure 9.1: Core structures of concepts “triangle” and “quadrilateral” in LTM 

Figure 9.1 shows two concepts, “triangle” and “rectangle”. The cloudy 

regions that surround the core structures represent the halos of these two concepts 

λ

λ

λ

λ λ

λλ

“triangle” “rectangle”

V V

V

V

V

V

V



9.2 From visual patterns to concepts 

 

253

(note that they overlap). The core structures are by necessity shown with a bare 

minimum of nodes among those that would be included in reality. 

A question immediately arises: is the Platonic node “line segment” (which 

stands outside of the “triangle” core structure) not in the halo of “triangle”? Recall 

that in the Slipnet of Figure 6.3 there is a direct connection between the nodes 

“triangle” and “line segment” (the Platonic notion), which is missing from Figure 

9.1. The answer is that now “triangle” is linked indirectly to the Platonic “line 

segment” node, because each of the λ-nodes of the core structure of a triangle is 

of type “line segment”. Figure 9.2 adds the Platonic “line segment” into the 

picture, somewhere in the common halo of “triangle” and “rectangle”.  

  

 
Figure 9.2: Platonic “line segment” added in Figure 9.1 

A link from each λ-node of the two core structures to the Platonic “line 

segment” is shown in Figure 9.2. These links represent the relation “is of type”. 

Similar links connect not only λ-nodes but every node of a core structure with its 

corresponding Platonic primitive concept. 
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9.3 Properties of LTM nodes and connections 

9.3.1 Long-term learning of associations 
How do we learn to associate notions or procedures with each other, initially with 

difficult conscious efforts, but later with the feeling that the task is becoming 

easier, until eventually it is automatic and vanishes from consciousness? For 

instance, anyone who has tried to learn to speak a foreign language has had the 

experience of words “coming to the tongue” progressively more easily. A non-

native speaker who learns to self-correct a linguistic error, after being corrected 

by a native speaker, might experience the same feeling of gradual automation. 

Mechanical tasks, such as learning to drive and tying shoelaces or a tie, also pass 

through similar stages. In the visual domain we often need to acquire a mental 

map before we can navigate confidently in a previously unfamiliar neighborhood 

or town. We acquire the map progressively, after repeatedly traveling through the 

region. In BP’s, a solver might learn to imagine the convex hull of irregularly 

shaped objects, after being repeatedly exposed to BP’s that employ this notion in 

th lution. In this case, the l association is: ular shape → of 

co hull”. 
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How is this observation modeled in a “traditional” Slipnet? When the relation 

between two Slipnet nodes is activated, their link can be thought of as shrinking. 

This has been illustrated in Figure 6.7, which is repeated in Figure 9.3, but 

adapted to the example: “irregular shape → convex hull”. The smaller conceptual 

distance allows more activation to spread from “irregular shape” to “convex hull”, 

making it easier for the latter idea to follow from the former one. 

But this cannot be an accurate model of long-term learning, because the 

increased activation of the node labeled “relation” in Figure 9.3 is understood to 

be a relatively temporary event. The elastic nature of the Slipnet links implies that 

activations not only increase but also decrease; otherwise, concepts would be 

permanently activated in memory — a rather un-cognitive-like situation. Indeed, 

in FCCA we read (Hofstadter, 1995a, p. 212, emphasis in the original): 

“The Slipnet is not static; it dynamically responds to the situation 

at hand as follows: Nodes acquire varying levels of activation 

(which can be thought of as a measure of relevance to the situation 

at hand), spread varying amounts of activation to neighbors, and 

over time lose activation by decay.” 

Thus, the conceptual distances between related nodes not only shrink, but also 

relax while activation decays. But if they do relax, do they return to their original 

“factory default” lengths? In previous FARG projects, the answer has been “Yes”, 

implying that Slipnet activations do not model truly long-term knowledge, but 

rather what the word “activation” implies, i.e., “respond to the situation at hand”, 

as mentioned in FCCA. The architecture of Phaeaco’s LTM modifies the original 

Slipnet model to accommodate long-term learning, as described below. 
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The basic idea is that when activation decays, links should not return to their 

original lengths; some residue of the earlier shrinking should remain on the 

previously activated node (i.e., the node labeled “relation” in Figure 9.3), acting 

as a reminder that the links with lengths that depend on this node were shrunk a 

short while ago. Residues should have a cumulative effect, so that if, for example, 

the activation of a node repeatedly reaches its highest value, the overall residue 

should “remember” this fact. Nonetheless, the accumulated residue cannot be a 

static quantity that remains fixed once formed; after all, minds hardly retain 

memories forever (more on this issue later). Thus, the residue must also decay, 

but at a much slower rate than the activation itself, reflecting the slowness in the 

loss of long-term memory. 

The idea of an activation residue is implemented in Phaeaco by a quantity 

called “significance”, which is added to the current activation, resulting in an 

overall “weight” of the node. Thus, 

weight = significance + activation 

The significance of a node is the long-term component of its weight, and 

possesses the same architectural properties as an activation, introduced in §7.2. 

The activation is the short-term component of the weight, functionally identical to 

activations in a Slipnet (e.g., it spreads to neighboring nodes), and structurally 

described also in §7.2. The only difference between significance and activation is 

in their rates of increase and decay. Specifically, the increase and decay rates of 

significance are several orders of magnitude slower than the corresponding rates 

of activation. Their sum, i.e., the weight, is what in a Slipnet “can be thought of as 

a measure of relevance to the situation at hand” (see the passage quoted earlier). 

The weight is also the quantity wi in Equation 8.7 that determines the computation 
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of the psychological dis  between two representations (§8.2.3). The way in 

which the increase in act n affects the significance is explained next. 

Recall that activation rease and decrease according to a sigmoid function 

f, discussed in §7.2, and d ted aga 9.4. 
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An additional parameter is the “limiting activation”. This is a number l > 0, 

very close to zero, the meaning of which is that the activation must remain 

between l and 1 – l. Thus, l defines simultaneously a lower and an upper bound 

for the activation value. Like stability, the limiting activation is not a system-wide 

but a per-activation parameter, i.e., each activation has its local value of limiting 

activation. 

What connects these parameters with the notions of activation and 

significance is that each time the activation value of a node or link reaches its 

maximum (1 – l ), the significance of that node or link receives a boost, increasing 

to the next discrete point along the x-axis. But also, when the significance itself 

reaches its maximum, its stability is increased by a small amount. Thus, repeated 

maximizations of the short-term component (activation) not only increase the 

long-term component (significance), but also cause it to become more stable. The 

purpose of this architectural principle is that if a concept, or a relation between 

concepts, is encountered multiple times, it should become both more important as 

an idea in memory, and also harder to forget. 

A consequence of the above is that when a link between two related nodes 

“relaxes”, it does not return exactly to its original length, but to one that is slightly 

shorter. This visualization makes sense if the length of a link corresponds not to 

the activation or the significance of the relational node but to its weight. 

A second consequence is that memories can be built that are literally 

unforgettable. If the stability of the significance increases beyond some value, the 

time it takes for the significance to drop back to “zero” can become longer than 

the lifetime of a system employing Phaeaco’s architecture. 
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9.3.2 Links as associations and as relations 
An additional difference between Phaeaco’s conceptual net nd a traditional 

Slipnet is that in Phaeaco two nodes can be associated with a ithout this link 

implying a node t represents explicitly a relation. 
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Once a relation is built, it cannot be destroyed, i.e., there can be no return to a 

simple association.67 

The reason for allowing simple associations besides explicit relations in 

Phaeaco’s architecture is that not every relation appears to be an explicit concept, 

worthy of a “handle” (i.e., a relational node) by which it can be referenced from 

(and make references to) other concepts. For instance, most connections between 

nodes in a core structure (§9.2.1) are simple associations — too mundane to be 

elevated to the status of a relation that can be talked about, and possibly matched 

against similar relations. However, associations are not condemned to anonymity 

forever. Repetition can cause the association to strengthen, and eventually to 

acquire a “label” (a node) that marks it as a relation. 

There is also a deeper justification for simple associations. Phaeaco does not 

model only the most intricate and commendable accomplishments of human 

cognition. Its domain is vision, and humans are not the only animals that see the 

world. They are, without doubt, the only animals that can entertain thoughts such 

as: “A square is a special case of a rhombus” or “Opposite is the opposite of 

similar”. Relations in such thoughts are treated as objects that can be talked about. 

In Phaeaco’s conceptual network (and also in any Slipnet), relations are reified as 

in Figure 9.5b. But it is doubtful that any animal68 can reify relations as humans 

do. If some cognitively complex animals entertain rudimentary representations, it 

seems plausible to assume that these consist of simple associations, rather than 

explicit (reified) relations. And because human cognition did not spring out of 

nonexistence suddenly one day fully equipped with explicit relations, simple 

associations must also be an integral part of human visual cognition. 
 

67  However, a relation, as well an association, can be permanently forgotten by means of a 
mechanism described in §9.4.2.2. 
68  With the possible exception of a few laboratory-raised and trained mammals and birds. 
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9.4 How to remember, and how to forget 

Some practical considerations are examined in this section. Specifically, methods 

are suggested for locating concepts in LTM without resorting to a sequential 

search, and also for discarding “forgotten” concepts and connections, thus 

avoiding the eternal expansion of memory to an ever greater size. 

9.4.1 Indexical nodes 
Some of Phaeaco’s architectural features are dictated by the demand that Phaeaco 

function reasonably well even if implemented in computing systems that do not 

employ a massively parallel architecture, as the human brain does, but in serial 

ones, which compensate for the lack of parallelism with computing speed. In 

LTM the lack of parallelism in the underlying hardware is problematic, because if 

a new representation must be matched against all existing concepts, it is 

impractical to examine each of them in sequence, given that pattern-matching and 

categorization are relatively expensive operations. 

This problem is solved by the designation of some nodes as “indexical”. An 

indexical node can be a copy of any relational or numerosity node of a core 

structure. The task of the indexical nodes is to make it possible to locate relatively 

quickly a set of candidate concepts for matching with a new representation in the 

Workspace. The set can include more candidates than necessary, but must not 

miss the concept that most closely matches the given representation. The 

indexical nodes stand as a separate layer, or interface between the Workspace and 

the rest of the LTM. An example will clarify their creation and use. 

Suppose the LTM has not yet learned any new concepts (i.e., it contains only 

the primitive concepts that are built into it, such as “slope”, “line segment”, etc.), 

and that the representation of a rectangle — already constructed in the Workspace 
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— must migra  into the LTM. There ar veral relational and numerosity nodes 

in the represen tion of a rectangle, show n Figure 9.6. 
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Any reappearance of a rectangle in the input will activate exactly the same 

indexical nodes in he LTM index, which in turn will pass their activations to the 

core of the concep  “rectangle” (only a  of the relevant links are shown in 

Figure 9.7). Sup o e now that a trapezoi s seen in the input. Figure 9.8 shows 

the indexical nod of a trapezoid. 
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Thus, given a trapezoid, the core of the concept “rectangle” will not receive as 

much activation as it would if a rectangle were present in the input. 

Assume now that the pattern of a trapezoid is judged to not match sufficiently 

well with “rectangle”, and so “trapezoid” is also established as a concept in LTM. 

Given a new trapezoid in the input, according to the previous discussion, both 

“rectangle” and “trapezoid” will receive the same amount of activation, since all 

of the indexical nodes of “trapezoid” are also shared by “rectangle”. To force 

“rectangle” to receive less activation given a trapezoid, the inactive indexical 

nodes of “rectangle” inhibit by a small amount the activation at its core. 

The purpose of the indexing scheme is to identify not the conceptual core with 

the highest activation, but a set of concepts that receive activations beyond some 

threshold. Once such a set of candidate concepts is established, each member of 

the set is matched against the given representation to determine the best match. 

The nodes of the LTM index are not pre-existing, but are established as new 

concepts arrive and reside in LTM, bringing their new indexical nodes with them. 

For example, if a triangle is seen next (continuing the previous example of a 

rectangle followed by a trapezoid), then indexical nodes such as “three line 

segments” and “three vertices” will be added to the LTM index.  

9.4.2 Forgetting concepts 

9.4.2.1 Justification of forgetfulness 
An essential difference between the memory of a computer and a cognitive 

memory is that the former is indiscriminate, or “lossless”, storing all information 

and making it available forever, whereas the latter is selective and prone to 

forgetting. Although forgetting might at first thought appear as a drawback, in 

reality it is a mechanism that adds power to memory, rather than detracts from it. 
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One obvious justification for not storing explicitly all memories forever is the 

sheer amount of information a biological organism is confronted with in its 

environment during its lifetime. Given that brains did not appear suddenly at full 

capacity as we know them in our species, but evolved gradually from very simple 

neural devices, there was hardly any option but to have the selectivity of memory 

built into brains from the very beginning. There is more to forgetting, however. 

An issue often mentioned in the literature on learning is the problem of 

overgeneralization in the absence of negative examples (e.g., Berwick, 1986). If 

the learning system receives both positive and negative examples of a set of 

elements to be learned, then there is no problem in reaching a description that 

correctly characterizes the set: positive examples expand the “boundary” of the 

description of the set toward generalization (see Figure 9.10), and negative 

examples prevent it from expanding and including elements not in the set 

(Mitchell, 1978). This is part of what is known as “inductive learning”. 

 
Figure 9.10: With both positive and negative examples, the set can be delineated properly 

The problem is that in many learning tasks, negative examples are not 

available. A child who learns a language, for instance, is seldom (and in some 

cultures never) informed of which morphosyntactic generalizations are wrong. 

Most linguistic learning is achieved by exposition of positive examples (see, e.g., 
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Brown and Hanlon, 1970; Wexler and Culicover, 1980). But then a question 

naturally arises: how is overgeneralization avoided? For example: 

• “timidity” is the state or quality of being timid, 

• “immensity” is the state or quality of being immense, 

• “authenticity” is the quality or condition of being authentic, 

but 

• “electricity” is not the state (or quality or condition) of being electric. 

Some “timid learning” mechanisms have been proposed as an answer, such as 

the “subset principle” (Berwick, 1986), in which an inductive system makes the 

smallest possible generalization from the given data. However, because inductive 

learning systems have no understanding of the importance of features, they often 

make faulty generalizations. For example, when a program called IPP learned 

about two bombings in India, each of which resulted in two deaths, it generalized 

that bombings in India always kill two people (in Schank and Leake, 1990).69 

Computational approaches to inductive learning generally suffer for a deeper 

reason: they treat all knowledge as eternally present — a consequence of the 

dimension of time being absent from computer memory. Because the property of 

being lossless is superficially seen as an advantage, few AI system designers have 

wondered whether there can be advantages in forgetting some facts. (But see 

Roger Schank’s work on dynamic memory for a notable exception (Schank, 

1982)). 

Consider a system that encounters only positive examples, but does not store 

them in memory forever. Instead, each example (each cross in the abstraction of 

Figure 9.10) stays in memory for some time, but requires confirmation to justify 
 

69  It is questionable whether IPP had even a rudimentary understanding of “bombing”, “India”, 
“death”, “to kill”, “people”, or even “two-ness”, for that matter. 
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its presence, otherwise it gradually fades from memory. Suppose also that the 

system has made some wrong generalizations (false positive assumptions). This 

situation is depicted in Figure 9.11, in which examples of false positive 

assumptions that have not received recent confirmation are shown as crosses with 

varying degree of intensity in their color. 

 
Figure 9.11: Inductive delineation of a set using only positive examples and the time dimension 

All dark crosses in Figure 9.11 are assumed to be examples that have been 

recently activated (confirmed) multiple times. Thus their “weight” remains at a 

high level. Crosses outside the set are generalizations that were made by the 

system (false positive assumptions) some time ago, but that were never 

confirmed, so they have started fading. Some examples in the set are also fading 

because they were not confirmed recently, but the hope is that they will be 

confirmed in the future, since they are in reality part of the set. The boundary of 

the set itself is grayed, because it is not delineated with perfect certainty at any 

time. Finally, for the system to succeed, some mechanism analogous to Phaeaco’s 

increase of “stability” in the retention of memory is necessary, otherwise all 

memory will be eventually erased, given enough time. 

An additional possible justification for forgetfulness in cognitive memories is 

the selectivity in what must be remembered. As everyone knows, memories are 
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not stored photographically (exceptional individuals notwithstanding), but 

abstractly. The previous paragraphs justifying inductive learning through 

forgetting, for example, cannot be remembered verbatim, but only abstractly. 

Similarly, neither the shape that appears in Figure 9.10, nor the locations of the 

plus and minus signs can be remembered with absolute accuracy by normal 

individuals. As pointed out in FCCA (Hofstadter, 1995a, p. 212), the greater its 

conceptual depth, the more important a concept is considered once it is perceived. 

If analogy-making is truly at the core of cognition, then literal mindedness cannot 

be an essential component of it, because the best analogies involve the most 

abstract elements of a situation, or situations. Thus, a deeper understanding 

implies some degree of forgetting.  

Cases of exceptional individuals with so-called “photographic” memory 

appear to confirm this view. Particularly well-known is the case of the mnemonist 

“S.”, who was able to recall sequences of random letters and digits listed in the 

form of an array on a page, and could recite them in any order (forward, 

backward, or diagonally), decades after first seeing them. Nonetheless, the same 

individual was incapable of understanding the meaning of a phrase with the 

slightest hint of abstraction, such as “the work went underway normally” (Luria, 

1968). The reader of Luria’s account of S.’s abilities is left with the impression of 

being offered a glimpse into the workings of the memory of a modern computer in 

which the superficial and specific have displaced the deep and essential. 

9.4.2.2 Forgetting in Phaeaco 
For a concept in Phaeaco’s conceptual network to be “remembered” without 

being present explicitly in the input, its weight must exceed a certain threshold. 

The (long-term) significance alone is insufficient to exceed this threshold, so that 

some amount of activation must reach the core node of the concept from its 
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neighboring nodes. The amount of activation that spreads from one node to 

another depends on the “length” of the link that connects the nodes (where the 

length is a function of the weight of the association or relation, as explained in 

§9.3.2). Hence, the more distant two linked concepts are, the harder it is to 

remember one given the other. Forgetting is automatically implied by the 

tendency of links to “relax” (extend) as time goes by in the absence of any 

reinforcement that would cause them to shrink once more. Thus forgetting in 

Phaeaco means that, over time, activation cannot reach some concepts. 

Even so, that some concepts are unreachable does not imply they are absent 

from the conceptual network. It is doubtful whether concepts in human memories 

are ever erased completely, but if they are, it probably happens gracefully, with 

some synapses devoted to the memory of a concept reassigned to the memory of a 

different one. But for a computationally implemented memory, it is probably best 

to include some mechanism to actually delete unreachable nodes. Phaeaco does 

this implicitly: when its memory is saved permanently on secondary storage, links 

with weight at its minimum value (the “limiting activation”, §9.3.1), are not 

followed by the algorithm that visits the memory nodes; hence, the nodes that are 

unreachable (by any link) are never saved in secondary storage. When the 

conceptual network is loaded back into memory, the unreachable nodes are absent 

from Phaeaco’s LTM. 

9.5 Conclusion: what does “learning” mean? 

The notion of “learning” has been used quite extensively in psychology, AI, and 

biology, but there is no consensus on what exactly learning is. The problem with 

this concept is that everybody has an intuitive understanding of it — as is the case 

with “intelligence”, for example. Not only is the concept familiar, but everyone 
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believes they have first-person experiences of learning. As a result, the word 

“learning” is easy to understand, so it has been used in a variety of instances that 

could be described more accurately as “memory update”. The present section is 

not an attempt to redefine the meaning of “learning”, but to review very briefly 

the ways and domains in which the term has been used, and to contrast them with 

the meaning of “learning” as it is used in Phaeaco. Specifically: 

• In biology, the notion of habituation is usually associated with the more 

general concept of learning. An organism habituates when it stops responding 

after repeatedly being exposed to the same stimulus. For example, a spider 

that does not consider a species of ants edible learns, after the first few 

encounters, to stop rushing to various parts of its cobweb where such ants 

keep getting entangled. Organisms as primitive as sea slugs are known to be 

able to habituate to repeated stimuli (e.g., Arms and Camp, 1988, p. 577). 

Habituation is simulated in Phaeaco’s architecture (though no claim is made 

that it is also modeled ) in at least one instance: when an idea for a solution to 

a BP has been generated and already found to be wrong, it can keep 

“bugging” the solution-seeking module, but each time with a diminished 

urgency. More about this will be explained in chapter 11. 

• In cognitive psychology, forms of memory and learning that have been 

explored extensively include classical conditioning, operant conditioning, and 

priming (Crick, 1994). Of these, the first two can be thought of as forms of 

association-building in Phaeaco, although the specific mechanisms are not 

modeled. Priming, however, is the main mechanism in Phaeaco by which the 

context can have an effect on perception (see §8.2.3, Equation 8.7). 

• In AI, there are a variety of ways in which the term “learning” has been used. 

The general term is “machine learning” (e.g., Mitchell, 1997), under which 
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several approaches to learning have been considered, including inductive 

learning (mentioned in §9.4.2.1), decision-tree learning, Bayesian learning, 

genetic algorithms, and, last but not least, artificial neural networks (ANN’s). 

None of these methods is related to learning in Phaeaco, except possibly 

ANN’s, because some features in Phaeaco’s conceptual network resemble 

those of an ANN — a resemblance that can be misleading. Learning in ANN’s 

deserves some further elaboration. 

Some connectionists assume (often tacitly, to avoid engaging in unproductive 

discussions) that theirs is the only “true learning” in the world of computation. 

After all, some features in ANN’s appear to be closely approximating those of 

brains: recognition from partial input (the filling-in of missing information), 

graceful degradation (the network does not crash if some units malfunction), and 

a machinery seemingly not tailor-made to the problem at hand, but consisting of 

“a number of units”, usually connected in some principled way. But a critical look 

at the way ANN’s learn reveals some disturbing properties. 

The following example is typical of ANN behavior. Geoffrey Hinton devised 

a three-layer network to compute family relationships (Rumelhart, Hinton et al., 

1986). (He intended it to be a demonstration of how error back-propagation works 

in ANN’s, but some connectionists have treated it as a genuine theory of 

psychology.) After some training, the network could answer questions about who 

is related to a named person in a given way. Steven Pinker offers the following 

criticism of this ANN, extending it to ANN’s in general (Pinker, 1997, p. 130). 

After training the model to reproduce the relationships in a small, 
made-up family, Hinton called attention to its ability to generalize to 
new pairs of kin. But in the fine print we learn that the network had 
to be trained on 100 of the 104 possible pairs in order to generalize 
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to the remaining 4. And each of the 100 pairs in the training regime 
had to be fed into the network 1,500 times (150,000 lessons in all)! 
Obviously children do not learn family relationships in a manner 
even remotely like this. The numbers are typical of connectionist 
networks, because they do not cut to the solution by means of rules 
but need to have most of the examples pounded into them and 
merely interpolate between the examples. Every substantially 
different kind of example must be in the training set, or the network 
will interpolate spuriously, as in the story of the statisticians on a 
duck hunt: One shoots a yard too high, the second shoots a yard too 
low, and the third shouts, “We got him!” 

The thousands of repetitions that are necessary for an ANN to “learn” serve as 

an indication of the distance of ANN’s from the methods by which humans learn. 

Although even a single input presentation is sufficient for Phaeaco to learn 

something new, and a few repetitions are sufficient for the formation of a concept, 

these facts will not be used to argue that Phaeaco’s learning is more human-like 

than that of ANN’s.  

In summary, it is now worth reviewing what “learning” means in Phaeaco: 

• Adding concepts: New core structures can be added in the conceptual network 

and linked appropriately to existing concepts. 

• Enriching known concepts: The statistics of featural nodes, as well as the 

strengths of links within a structure, can be updated, resulting in concepts that 

reflect in a more informed way the examples that have generated the concept. 

• Shortening the “distances” between nodes, making it easier for activation to 

spread among them, thus reaching faster from one primed concept to another. 

• Forgetting: Phaeaco’s memory can be made to selectively include only 

relevant and current information. 



    

CHAPTER  TEN 

Image Processing 
10 Image Processing 

As was discussed in chapter 4, if it were expected that some human “helper” 

would convert BP’s from their original form (e.g., as printed in Bongard’s book) 

to some internal representation (for instance, as in chapter 7) before Phaeaco 

could process BP’s further and solve them, the present approach would be at best 

unremarkable — perhaps even dishonest, according to §4.1. This chapter explains 

how Phaeaco’s retinal level (§4.3) perceives the pixels given as input, acting in 

cooperation with the cognitive level. The two levels work in a “pipelined” fashion 

(Figure 10.1). 

 
retinal level 

cognitive level 
Time 

Figure 10.1: Pipelined execution of retinal and cognitive levels 

Figure 10.1 indicates that the cognitive level (already reviewed in chapters 7–

9) does not wait until the retinal level finishes processing the input entirely, but 

starts its work as soon as possible (the exact instant is explained in §10.3.13). This 

implies that Phaeaco’s retinal level is not an isolated “module” for image 

processing, but is intertwined with the perception at the cognitive level. Indeed, 

the retinal level can to some extent receive feedback from the cognitive level, 

adjusting the values of some low-level parameters appropriately, so that it “sees” 
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what the cognitive level “wants” it to see (always within some limits, without 

succumbing to flagrant self-deception).70 

10.1 The preprocessor 

Despite the introductory remarks regarding the intertwined operation of the retinal 

and cognitive levels, there is one set of procedures that does act as an independent 

module. This is Phaeaco’s visual preprocessor, the purpose of which is to convert 

any image — even one of photographic quality — into a black-and-white figure 

that corresponds in a very faithful way to the original one. The term “black-and-

white” means that the pixels of the resulting image are exactly as in a BP: either 

black or white, as shown in Figure 10.2, with no intermediate shades of gray. 

              

Figure 10.2: Left: original image; Right: black-and-white rendering by the preprocessor 

                                                 
70  For example, if the context contains many circles, the routine responsible for circle detection 
(§10.3.12) will become slightly more flexible than usual in accepting a round shape as a circle. 
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The reason for including a preprocessor as a first step in Phaeaco’s operation 

is the generality of the architecture. Recall that Phaeaco must not be limited to the 

BP domain, but must be able to handle any visual input. At present Phaeaco 

cannot understand anything that does not belong to a flat geometric world. But if 

no attempt were made to design Phaeaco so that it can accept general visual input 

(of photographic quality), then some simplifying assumptions about the nature of 

the input would undoubtedly be built deep into its architecture, thus hampering 

efforts to extend the system in the future. 

The preprocessor applies standard image-processing filters to the input pixels 

to achieve the desired transformation to a black-and-white figure. 

              

Figure 10.3: First filtered transformation applied on original image (left; result on the right) 

For example, Figure 10.3 shows the result of the first such transformation. 

The filter consists of the 3 × 3 array of integers shown in Table 10.1. To “apply 

the filter” means that the red, green, and blue components of each pixel are 

processed independently. For concreteness, focus on the red component, which is 
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processed as follows: The 3 × 3 array is centered on the pixel to be processed, and 

the central value of the array (the number 8 at row 2, column 2) is multiplied by 

the “red” component of that pixel. (Color components are usually in the range [0, 

255].) At the same time, the red components of the eight neighbors of the current 

pixel are multiplied by the integers in the corresponding locations of the 3 × 3 

array. The sum of the nine products is added to a so-called “bias factor” of 255. If 

the total sum falls outside the allowed range [0, 255], it is truncated to either 0 or 

255, accordingly. The resulting value is the new “red” component of the current 

pixel. An identical transformation is applied to the green and blue components, 

yielding a pixel with modified red, green, and blue components that replaces the 

original pixel. 

-1 -1 -1

-1  8 -1

-1 -1 -1

Table 10.1: Filter for obtaining the “contours” in an image 

It is now a simple matter to produce the desired image on the right of Figure 

10.2, having obtained the image on the right of Figure 10.3: every pixel 

sufficiently close to white must become white; otherwise it becomes black. The 

Euclidean formula for distance can be employed to make the notion of 

“closeness” between two colors concrete: each pixel is a 3-tuple (red, green, 

blue), so the color-distance dc between two points (r1, g1, b1), and (r2, g2, b2) can be 

computed by the formula: ( ) ( ) ( )2
21

2
21

2
21 bbggrrdc −+−+−= . 

A threshold value t must be used in the above transformation: assuming the 

distance dc of each pixel from the color white (255, 255, 255) is computed, then if 
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dc < t, the pixel must be converted to white, otherwise to black (0, 0, 0). The value 

of t that yields the best results depends on the quality of the image. For now, 

Phaeaco uses a fixed threshold, but future extensions must employ some 

algorithm to derive it from the properties of the image. 

10.1.1 Determining the background color 
The preprocessor is not invoked unless the image is a photograph. How is this 

determined? Imagine a pre-preprocessing routine that counts the colors of the 

pixels: if the number of colors71 is more than two, then the preprocessor is 

invoked and converts the image to one with exactly two colors, as just described. 

Otherwise (if the colors are exactly two, with whatever exact hue) there is no need 

for preprocessing. 

However, even after a two-colored image has been obtained, one final 

question remains before the image can be considered as input for a BP: which of 

the two colors comprises the foreground, and which the background? It is not 

always possible to answer this question categorically.72 But for input that can be 

used in boxes of BP’s it is usually possible to decide among the two colors. 

Phaeaco uses a heuristic to answer this question: it considers the pixels in a 

frame around the border (the thickness of the frame is 5% of the width and 5% of 

the height of the image). The color that is more than 50% in that frame is deemed 

the “background”. (If the heuristic fails, so will Phaeaco in solving the BP.) 

Once a decision about the identity of the background color has been made, the 

pixels are transferred to an internal array of integers, in which 0 stands for 

background, and 1 for foreground. All further processing uses this internal array. 

 
71  Grayscale counts as “colors”, too. 
72  For example, consider a checkered image alternating black and white squares. 
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10.2 The pipelined process model 

The main image-processing stage (following the preprocessing one) is organized 

in a number of processes, labeled by the letters of the alphabet (A, B, C, etc.), 

which run in a pipelined fashion, as in Figure 10.4. 

Process A 
Process B

Proc

.

Figure 10.4: Pipelined
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The answer is to be found again in Figure 4.9, which conveys pictorially the 

philosophy behind Phaeaco’s architecture. If Phaeaco were an attempt to simulate 

the functioning of the brain, and in particular the parts of the visual cortex that 

process complex visual notions (“shape”, “dent”, “bump”, “turning clockwise”, 

etc.), then codelets would be a possible candidate for an architectural framework. 

But, as Figure 4.9 suggests, the nature of computer hardware, which is 

fundamentally different from that of neural structures, calls for an approach that is 

free to utilize the properties of computers at the retinal level and that 

simultaneously heeds the requirements of the cognitive level. 

Nonetheless, Phaeaco’s pipelined process model is inspired by the way the 

primate visual cortex is organized into modules. For example, besides the two 

retinas at the front end of the visual system, the visual cortex of primates includes 

more than 20 regions (V1, V2, V3, etc., but their labels are not universally 

accepted), which are devoted to the perception of line segments, slopes, lengths, 

color, motion, etc. (Posner and Raichle, 1994; Thompson, 1993; Zeki, 1993). 

There is no one-to-one correspondence between Phaeaco’s processes and the 

visual cortex areas, but there is an abstract similarity in organization. For 

example, most of the input to area V2 of the cortex is from V1, most of the input 

to V3 is from V1 and V2, and so on — a progressive funneling of visual 

information (Thompson, 1993, p. 244). Also, receptor cells in V1 are simple, 

whereas most of the cells in V2 are of a type called “complex”, and more than 

half of the cells in area V3 are “hypercomplex” (ibid., p. 245). A similar 

progression in complexity of processing routines and funneling of processed 

information also characterizes Phaeaco’s retinal-level organization, which is 

explained in detail in the rest of the present chapter. 
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10.3 The retinal processes 

10.3.1 Process A 
The first retinal process is independent from almost all other processes74. It is also 

the simplest, testing pixels of the image at random locations, and ignoring them if 

they are 0 (“white” background pixels in a typical BP box), but inserting them in a 

queue for further processing (by process B, waiting in the pipeline), if they are 1 

(“black” foreground pixels that belong to some object75). Suppose the input is as 

shown in Figure 10.5a. 

 

 

(a) (b) 

Figure 10.5: Input for process A: original (a), and magnified ×2 in a visual box (dashed lines) (b) 

Figure 10.5 shows the original input on the left. On the right, the input is 

shown magnified by a factor of 2 to make individual pixels visible, and is also 

placed in a visual box (dashed lines). Process A takes a random sample of pixels 

within the visual box, shown in Figure 10.6. 

                                                 
74  See §10.3.10 for an exception. 
75  The word “object” at the retinal level will be used to refer to a group of connected pixels. 
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Figure 10.6: Sample of random pixels created by process A 

Process A samples the entire visual box uniformly, but only the sampled 

pixels that are 1 in the input (i.e., not part of the background) are shown in Figure 

10.6. The sampling density is a “retinal parameter” of this process. The term 

“retinal parameter” will be used to denote a parameter that is not hardwired 

directly into the programming code (it is specified in a file of parameters), but is 

independent of anything that happens at the higher, cognitive level. 

Traditionally in image-processing, a rectangular image is scanned starting at 

its top left corner and proceeding in a left-to-right, top-to-bottom fashion to its 

bottom right corner. The reasoning is that all pixels of the image would have to be 

seen sooner or later, so it is best to scan them in a systematic manner. There are 

two reasons for not following the traditional method in Phaeaco. 

The first is efficiency. Although eventually Phaeaco will process all input 

pixels that are 1, the processes in the pipeline do not need to wait until all pixels 

are seen by process A before reaching their first conclusions. Occasionally this 

might lead to a situation that appears more like “jumping to conclusions”, rather 

than drawing solid and irrefutable results from the given input. But this is 
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compatible with the philosophy of Phaeaco’s architecture. If any spurious, wrong 

conclusions are drawn initially, they will be corrected later by other, more 

informed retinal processes. Figure 10.7 explains further the issue of efficiency 

gain by offering a preview of the results of retinal processes that will be discussed 

soon, following process A. 

  

(a) (b) 

Figure 10.7: Traditional sequential processing (a), vs. random processing in Phaeaco (b) 

The image in Figure 10.7a can be the partial result of a sequential approach 

that, like Phaeaco, does not wait for the entire image to be scanned before 

identifying, for example, line segments. Figure 10.7b has the same amount of 

“ink” as Figure 10.7a, but the “ink” is spread randomly over the figure. In other 

words, the sums of the lengths of the line segments in the two drawings are 

identical. Nonetheless, Figure 10.7b has a head start in identifying what the input 

is, because some collinear segments can be extended (instantly, from their 

equations) to form longer lines; some of these longer lines can be projected and 

found to meet at points that are 1 in the input, and therefore possible intersection 

points of input lines; and finally, the end-points of some line segments can be 

seen as belonging to a circle, so the suspected circle can be created instantly, and 

further confirmed by random sampling of points generated from its equation. 

Nothing of this is possible in Figure 10.7a, because no algorithm can “guess what 

comes next” in a sequential, top-to-bottom scanning of the input. 
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A second reason for Phaeaco’s random sampling of pixels is that in this way 

randomness becomes woven into the fabric of Phaeaco’s architecture. Cognitive 

systems, unlike conventional programs, do not always arrive at exactly the same 

conclusions given identical inputs. Phaeaco’s random collection of line segments, 

as shown in Figure 10.7b, will be different the next time the same input is 

presented. Although at a sufficiently high level the representation of the input will 

be identical (“a parallelogram with a circle inside”), the details at a lower level 

will differ. This might not appear advantageous in a seemingly unambiguous 

figure such as the one examined above, but randomness is at the basis of every 

system that can, under more complex conditions, act unpredictably in an 

unpredictable world. If humans always acted in a predictable way, they would 

hardly feel creative, or be able to justify their feeling of “free will”. This does not 

mean that the mere existence of randomness suffices to explain creativity and the 

feeling of free will, only that its absence precludes them (Mitchell, 1990). 

Process A does not examine random pixels within the visual box indefinitely. 

It “self-regulates” its rate of pixel examination, gradually diminishing it, until the 

rate drops to zero. It can do this because it monitors the ratio of “hits” (pixels that 

are 1, and thus belong to some object, and have not been hit before) to the total 

number of pixels examined. The smaller this ratio is, the less time A allocates for 

itself to run. (The remaining time is distributed among other processes.) 

Eventually the ratio becomes so small that A “knows” it is time to retire. 

Occasionally, an isolated pixel can be missed by process A. The probability 

for this is quite low, and it is practically zero for a group of four or more pixels. 

10.3.2 Process B 
The task of this process is to replace the number 1 of each pixel of an object with 

another, usually larger integer number, called its “altitude”. The altitude must be 
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approximately proportional to the distance of the pixel from the closest border of 

the object. The more “internal” the pixel is, the higher its altitude must be. 

 p q r

Figure 10.8: Pixels at different “depths” in a figure 

Figure 10.8 shows three pixels, p, q, and r, of an object. Pixel p is close to the 

border of the object, so its altitude must be smaller than the other two; pixel r 

must have the highest altitude, not only among p, q, and r, but also probably 

among all pixels belonging to this object. 

The purpose of process B is to prepare the ground for the next process, C, 

which identifies pixels that belong to the endoskeleton of the object (§7.4.9). 

The task of processes B and C (combined) is known as “thinning” in the 

image-processing literature. Traditionally, thinning is achieved by successively 

“peeling off ” pixels that belong to the border of the object, layer after layer: 

eliminating one layer of border pixels exposes the next layer of pixels, which now 

become the new border, and so on. When no more layers can be peeled off 

(because doing so would eliminate the object), the last remaining pixels constitute 

(approximately) the endoskeleton of the object. The problem with this thinning 

technique is that all pixels must be available before the procedure starts. But this 

conflicts with Phaeaco’s fundamental principle that work must start as soon as 

input becomes available, even with only partial information, and without waiting 

for prior stages to be completed. 
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Figure 10.9: A piece of input (magnified on the right) and concentric squares around a pixel 

Process B accomplishes the task of assigning an altitude to each pixel it 

retrieves from the queue of pixels created by process A as follows: given a pixel 

p, it examines the neighbors of p in successive “concentric squares”, and counts 

the number of neighbors that are not 0 (Figure 10.9). The altitude of p is the total 

number of its neighbors that are not 0. For example, the first square centered at p 

comprises its eight immediately neighboring pixels, so the number of those pixels 

that are not 0 is counted (call it n); the next square, concentric to the previous one, 

is larger and is made of pixels that surround the previous square; the number of 

pixels along the perimeter of the new square that are not 0 is added to n; and so 

on. The increase in the size of the concentric squares stops as soon as a pixel is 

found that is 0. The final value of n becomes the altitude of pixel p. 

Figure 10.9 shows the original input on the left, and a small piece from the 

upper-right corner of the parallelogram magnified on the right. The figure shows 

how process B would calculate the altitude of pixel p at the center of the 
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magnified region. Two concentric squares centered at p are shown: the innermost 

square consists of the eight immediate neighbors, and the outermost one includes 

15 pixels that are not 0 (black), and one which is 0 (white, at the upper-right 

corner). Since a 0-pixel is found, the algorithm stops and does not examine larger 

concentric squares. The total count of non-0 (black) pixels in the two squares is 

 and that is the altitude of p. ,23158 =+

Process B helps process A to concentrate on non-0 pixels by asking A to 

examine the eight neighbors of the pixel under B’s focus, instead of other, random 

pixels. In this way, B usually manages to compute the altitude of a pixel without 

waiting for A to see all the pixels of the input image, in A’s random fashion. 

Process B ends when there are no more pixels left in the queue. Like A, it self-

regulates the time allocated for it to run, by monitoring the length of the queue: 

the shorter the queue, the more certain B becomes that it is approaching its time to 

stop. 

10.3.3 Process C 
This is a companion of process B, completing the task of identifying the pixels 

that belong to the endoskeleton of an object (or “median pixels”, as they are 

called in the literature). Process C achieves this by examining each pixel p for 

which process B computed its altitude, as well as the altitude of its eight closest 

neighbors. Pixel p belongs to the endoskeleton if there are no more than two 

closest neighbors with altitudes strictly greater than the altitude of p. 

Note that by the above definition, isolated pixels, or pixels that are lined up 

forming a line of width 1, belong to the endoskeleton. 

Figure 10.10 shows an example of an endoskeleton pixel on the left, 

surrounded by its eight neighbors, and a counterexample on the right. The altitude 

of each pixel is shown, printed in bold type if it is greater than the altitude of the 
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central pixel. On the left, only two neighbors are “taller”, so the central pixel is 

deemed part of the endoskeleton. In contrast, on the right there are three taller 

pixels, so the central pixel is eliminated from the endoskeleton. 
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Figure 10.10: Example of endoskele
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(a) (b) (c) 

Figure 10.11: Successive stages in the accumulation of endoskeleton pixels 

Following the principle that data must be used as soon as they become 

available, Phaeaco starts forming hypotheses about line segments, even with as 

few pixels as those in Figure 10.11a. Most of these hypotheses will be wrong 

(“false positives”). But it does not matter. As explained in §9.4.2.1, if these initial 

“overgeneralizations” do not receive enough reinforcement in the future, they will 

decay as time goes by, whereas correct generalizations will endure. Consequently, 

a line-segment detector is a line segment together with an activation value. 

Indeed, detectors of all kinds of retinal primitives possess activation co. If 

the data are still at the early stage of Figure 10.11a, some ten eakly 

activated detectors will be created (Figure 10.12). 

Legen

 

 
Figure 10.12: Initial tentative line-segment detectors given a few data
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points to lines, and the activation value of each detector depends both on how 

many points participate in it, and how well the points fit. Only one of these 

detectors is a “real” one, i.e., one that will become stronger and survive until the 

end (the nearly horizontal one at the top); but process D does not know this yet. 

Suppose now that more points have arrived, as in Figure 10.13. Some of the 

early detectors will probably receive one or two more spurious ts, but their 

activation will decay more than they will be reinforced. Also, a fe re spurious 

detectors might form. But, simultaneously, the “real” ones will sta pearing. 
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algorithm of process D was designed first, whereas the cognitiv tegorization 

algorithm was formed later as an elaboration of the present one. 
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10.3.5 Process E 
This process is concerned with the detection of intersections of line segments 

found by process D. As before, intersection detectors have activations, but in this 

case they depend entirely on the activations of the line segments that form the 

intersection. Thus, this is not an activation that decays autonomously in time, but 

is instead a function of the activations of the component line-segment detectors. 

This is necessary, because intersections do not receive reinforcement from data 

points independently from process D. 

The main challenge for process E is to guess correctly where the actual 

intersections are, since process D initially can generate any number of spurious 

line segments, and therefore spurious intersections as well. To make a guess, 

process E examines a small rectangular area around the purported intersection 

point: if all pixels in the rectangle are 0, the intersection is ignored (Figure 10.15). 

 
Figure 10.15: Guessing an intersection and examining its neighborhood 

Once an intersection is identified as possible, the line segments that form it are 

extended up to the point of their intersection. (The dashed lines in Figure 10.15 

depict the extension of the line segments.) Occasionally, however, the lines 

intersect at a point that coincidentally is close to a non-0 pixel, whereas the line 

segments themselves do not reach that point, as in Figure 10.16. For this reason, a 
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sparse sample of the pixels comprising the extensions of the line segments is also 

examined, verifying that the pixels are indeed non-0, i.e., part of the image. 

 
Figure 10.16: The lines on the left, if extended, coincidentally intersect on the line on the right 

Process E also records the type of the intersection, i.e., whether it is a vertex, 

touch, or cross point (§7.4.2; K-points are discussed later, in process K), and 

stores the information into the structure of the intersection detector. 

10.3.6 Process F 
Process F is concerned with filled (“thick black”) objects. Specifically, it 

identifies pixels that lie at the border of a filled region and sends them to process 

D, which thus finds line segments that form the exoskeleton of the filled object. 

As was mentioned in §10.3.3, some of the pixels with an altitude greater than 

a fixed threshold (a retinal parameter) are sent to process F for further treatment. 

Figure 10.17 shows what process F does with such pixels. 

 
Figure 10.17: Generation of “rays” from a source pixel, searching for border pixels 

As suggested by Figure 10.17, process F treats the pixels it receives as sources 

of a number of “rays” (16 in total), along which it searches for border pixels. A 

pixel is at the border if three or more of its eight surrounding neighbors are 0. 
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Process F repeats this algorithm for all source pixels it receives from process 

C. A small number of sources generates a large number of border pixels, so only 

very few source pixels are required by process F. 

10.3.7 Process M 
The shape of the letter “M” is a mnemonic for the task of this process, which 

looks for line strings (§7.4.4) among the line segments created by process D: 

hence its out-of-order alphabetic position.76 Note that the line strings that this 

process discovers do not automatically form corresponding nodes at the cognitive 

level, as described in §7.4.4; these are retinal-level line strings, some of which 

might be precursors of curves, identified as such by process G (§10.3.8). 

Process M “wakes up” as soon as an intersection is detected, and tries to make 

longer the line strings created by intersections. The main issue for process M is 

that even a simple object with a few intersections usually contains more than one 

possibility for parsing it into a collection of line strings. For example, in Figure 

10.18 the strings ABCEF, ABDEF, ABCEDB, ECBDEF, EDBCEF, and several 

others, are all possible. (For an extreme case, see Figure 7.31.) 

 

A B

C

D

E F

Figure 10.18: Simple input with ambiguous parsing in line strings 

If the input contains more than one possibility for a line string, process M will 

come up with one particular “parsing” of the input. Since the order of line-

 
76  Process M must be described before process G, for which it is a prerequisite, because G 
examines whether line strings form curves (next subsection). 
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segment identification by process D is random, except that longer lines are 

usually seen first, the line strings that process M identifies are also random, but 

biased towards those consisting of longer lines. A subsequent run with the same 

input is not guaranteed to parse the input into exactly the same line strings, but 

will be biased toward seeing line strings consisting of the longest lines, and with 

the largest number of them. 

In its attempt for maximization, process M frequently joins small line strings 

end-to-end, forming larger ones, and eliminating the “subsumed” smaller strings. 

It also notices when line strings form closed loops. 

The decrease of activity in processes D and E signals also a corresponding 

decrease of activity in process M. 

10.3.8 Process G 
This is a curve-detector process. As was noted before (in process M), the curves 

detected by this process do not automatically form corresponding nodes at the 

cognitive level. After all, some of these curves will be further recognized (by 

process O, §10.3.12) as circles or ellipses, and therefore will lose their status as 

“mere curves”. Thus it is better to describe them as “curve detectors”.77 

Process G directs its attention to line strings created by process M, becoming 

particularly interested in strings that are made of several relatively short lines, 

meeting end-to-end at rather wide (obtuse) angles. The better a line string satisfies 

these criteria, the more effort process G exerts trying to see it as a curve. 

The algorithm by which process G determines whether a line string is a curve 

examines the intersection points of the line string, and tries to discern whether the 

 
77  This is a general remark: all elements identified at the retinal level are “detectors”, suggesting 
to the cognitive level what might exist, but not forcing a rigid interpretation of the input. It is the 
cognitive level that ultimately decides, considering additional context, what exists in the input. 
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object at those points is curved or forms an angle. It is possible that only part of 

the line string is curved, with the rest consisting of straight lines; in this case, the 

algorithm detects a curve only in the part of the line string that appears curved. 

 
Figure 10.19: Actual curved object and its approximation by a line string 

Figure 10.19 shows a curved object (black region) and a superimposed line 

string that has been detected by process M, approximating the object.78 Consider 

point P, shown in the figure. Process G examines how close the endoskeleton 

pixels are to the line string segments in the vicinity of P (Figure 10.20). 

 
Figure 10.20: Closeness of endoskeleton pixels to the tangent line: curve (a); no curve (b) 

Figure 10.20a is a magnification of Figure 10.19 at P. The two segments of 

the line string that meet at P clearly deviate from the endoskeleton pixels in the 

vicinity of P. In contrast, in Figure 10.20b the points of the two line segments and 

the endoskeleton pixels essentially coincide. 

 
78  In reality the line string is not so perfect: some of the constituent line segments cross or touch 
each other, rather than meeting exactly at the intersection point as shown in the figure. 

P

vicinity 
of P 

vicinity 
of P 

(a) (b)
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Once a piece of a line string has been identified as a curve, there are two steps 

that must occur before the operation is considered complete: the line string must 

be replaced, either partially or completely, by the curve; and some way must be 

established to represent the curve. This is not trivial. The few points of the line 

string that have been found to belong to the curve are not sufficient to represent 

the entire curve. A representation is needed that can produce any point along the 

curve in a continuous manner, so that, for example, the curve can be traced along 

its length, or so that its curvature can be computed at any desired point, and so on. 

The first step is easy: either the line string is deleted, or what is left of it (after 

the curve has been extracted) remains at the retinal level. For the representation of 

curves, Phaeaco uses parametric cubic b-splines, explained below. 

Suppose the points of the line string from which the curve was derived are P0, 

P1, …, Pn (i.e., a total of n + 1 points). Then any four consecutive points (e.g., P0, 

P1, P2, P3) define a cubic polynomial a  in a unique way. If 

we consider only three points (e.g., P

01
2

2
3

3 axaxax +++

0, P1, P2), then there is a family of cubic 

polynomials that pass through the three points that depends on a single parameter 

(the family has one degree of freedom). If we consider only two points (e.g., P0, 

P1), then the family of cubic polynomials that pass through them has two degrees 

of freedom. Thus we can fit a cubic polynomial between any two consecutive 

points, but it will be “too free” (indeterminate). To restrict its freedom, we can 

demand that any two consecutive polynomials (e.g., the one that passes through 

points P0 and P1, and the one that passes through points P1 and P2) must be 

“smooth” at their common point (not form an angle at P1, i.e., agree on their first 

derivative), and also agree on their curvature (i.e., agree on their second 

derivative). These two conditions eliminate the two degrees of freedom. If instead 
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of a polynomial in standard form we derive parametric equations, i.e., a pair of 

polynomials [x(t), y(t)], we end up with the formulas in Equation 10.1. 

nibtbtbtbatatatatS iiiiiiiii ,,0],,[)( 01
2
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Equation 10.1: Parametric cubic b-splines for a curve with n + 1 points 

 Equation 10.1 describes only the form of the formulas, but does not reveal the 

method by which the coefficients aji and bji, j = 0, ..., 3, i = 0, ..., n, can be 

computed. The derivation of these coefficients and an algorithm for computing 

their values from a set of n + 1 points are given in Appendix B. 

10.3.9 Process H 
This role of this process is minor: it performs occasional “corrections” on the 

output of process D, the line-detecting process. Due to noise in the manner by 

which pixels form lines, sometimes two or more distinct line detectors identify 

essentially the same line segment (Figure 10.21). 

 
Figure 10.21: Three line detectors for what should be seen as a single line segment 

The example shown in Figure 10.21 is extreme: three line detectors have been 

created on what should be seen as a single (probably hand-drawn) straight line. In 

this case, process H will unify all three detectors into a single one, with which it 

will replace the three original detectors, erasing them from the memory of the 

retinal level. The algorithm works equally well with lines of either the 

exoskeleton or the endoskeleton. 
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10.3.10 Process i 
Process i detects isolated “dots” in the input.79 A dot is anything too small to be 

assigned an explicit shape, even after applying the magnification algorithm 

(§10.3.17). The threshold below which something is considered too small to be 

given a shape is a retinal parameter.80 

Process D, the creator of line detectors, is also the process that “suspects” the 

existence of dots: if there is an isolated group of a few pixels, process D fails to 

“explain” them with a straight line, but it notices their existence, and summons 

process i to verify the presence of a dot. 

The algorithm process i uses to identify dots is trivial. The only subtle point 

here is that if a fair number of very small dots (e.g., isolated pixels) has been 

identified, then this process increases the time allotted to process A, to make sure 

no individual pixel will be missed. The reasoning is that if several dots have 

already been seen, the odds are that there are more of them in the input. 

10.3.11 Process K 
Another simple process, again with a mnemonic name, K is assigned the task of 

detecting K-points (§7.4.2). Its functioning parallels that of process H, except that 

instead of unifying line detectors it unifies intersection detectors that appear to be 

too close to each other, replacing them with a single K-point detector. 

10.3.12 Process O 
Two distinct tasks are undertaken by process O: one is to detect the presence of 

closed regions and compute their area; the other is to identify circles or ellipses 

among objects already detected as curves. 

 
79  Hence its name in lowercase — the dot of the “i” serving as a mnemonic. 
80  A radius of 5 pixels works well at medium screen resolutions. 



10.3 The retinal processes 

 

299

                                                

To accomplish the first task, process O selects randomly a line string or a 

curve. If the object selected is already known to be “closed” (by processes M or 

G), there is nothing further to detect. Otherwise, it is still possible that the object 

defines a closed region, but that processes M and/or have G failed to realize this 

fact (because their algorithms do not specialize in this task, identifying closure 

only incidentally). Process O performs a more thorough investigation. In addition, 

it detects near-closure, or any degree of closure, using an algorithm already 

described in §7.4.7 and depicted in Figure 7.37, which is copied below as Figure 

10.22: the ratio of “escaping” rays to the total number of rays is a first estimate of 

closure, and repetition of this procedure improves the accuracy of the estimate. 

 
Figure 10.22: Algorithm for computing the closure (or “openness”) of a region 

In the case of a completely81 closed region, the algorithm for computing area 

is triggered, whereas any other region (whether closed or not) triggers the 

algorithm for computing its convex hull. These will be described in §10.3.18. 

The second task of process O involves the identification of the only shapes 

that Phaeaco is hardwired to recognize: an ellipse in general (in any orientation), 

and a circle in particular. It could be argued that Phaeaco should be able to learn 

the shape of an ellipse or circle relying on primitives, just as it does for “triangle”. 

However, the hardwired solution was preferred as a shortcut. The formulas for 

ellipse and circle identification from a set of points are given in Appendix B. 

 
81  “Completely” within the certainty allowed by the described approximating procedure. 

“escaping”
rays
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10.3.13 Process P 
P stands for “perception”. This is the process that serves as an interface between 

Phaeaco’s retinal and cognitive levels. Process P remains alert as long as activity 

takes place at the retinal level, noticing the appearance of any “detector” (of lines, 

intersections, dots, curves, regions, or any detectable object). Its function is to 

select a detector (probabilistically, according to the activation of the detector) and 

generate the corresponding cognitive-level node that represents it. Nodes are not 

merely generated and given to the cognitive level, but placed in the same 

structure, if they belong together. For example, two line segments that belong to a 

rectangle will cause the creation of two λ-nodes, and process P will make sure to 

place them under the same object node (which it will also create). 

10.3.14 Process R 
This is a cognitive-level process, and its task is to select and run codelets from the 

Coderack. That it shares the time with all other processes of the retinal level 

means that initially the cognitive level occupies only a very small time slice in the 

overall processing of the input. But as the other retinal processes “die” one after 

another (because there is nothing left in their input on which to work), process R 

is allotted more and more of the available time, until eventually it is nearly the 

only process that keeps working. 

10.3.15 Process Q 
Q is another cognitive-level process, concerned with “quantity” (of anything). For 

example, if there are several dots in the input, and representational nodes for them 

are being created by process P, this process will notice that there are “many dots” 

in the representation. The larger the number, the more probable it is that Q will 

notice it (usually a quantity above five yields a very high probability that it will be 
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noticed). What happens after noticing the number depends on the type of the node 

that appears many times. One course of action (common in all cases) is to slow 

down, and eventually cease, the generation of individual nodes representing input 

entities, allowing only their numerosity node to be updated. An example of what 

else can happen with large quantities is given in the next subsection. 

10.3.16 Process S 
This is a retinal process concerned with the “shrinking” of objects under certain 

conditions. For instance, process Q might have noticed that an object includes a 

large number of short lines, as, for example, in Figure 10.23. 

 
Figure 10.23: Object with many small lines 

The representation of the object in Figure 10.23 will initially include several 

short line segments. But when their number keeps increasing, process Q will 

notice this, and besides curbing the proliferation of λ-nodes in the representation, 

it will also signal for process S to apply an algorithm that “shrinks” the object, 

attempting to perceive its shape by performing the equivalent of looking at it from 

a distance. The algorithm works as described below. 

If an object is shrunk by a naïve method (e.g., turning a pixel in the smaller 

version to 1 if any of the pixels in a corresponding n × n neighborhood of the 

original larger object is 1), the result is a failure, because all the imperfections of 

the original object are transferred to the miniaturized one. The purpose of 

shrinking is to eliminate the imperfections, smoothing out the object as much as 
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possible. To this end, each pixel in the miniaturized version, instead of being 

assigned 1 (“black”) or 0 (“white”), can acquire intermediate (“gray”) values in 

the range [0, 1], according to how many black pixels exist in the corresponding n 

× n neighborhood of the original object. 

 
    

   
    

 

 
 

   
   
    

 

 
 

Figure 10.24: Conversion of a neighborhood of pixels into a single pixel with “gray” value 

Figure 10.24 shows two examples of 3 × 3 neighborhoods of the original 

object that are converted to a gray pixel. The example on the left has few black 

pixels, hence a lighter gray value; whereas the example on the right has more 

black pixels, hence a darker gray value. The result is shown in Figure 10.25. 

 
Figure 10.25: Intermediate step in the shrinking of an object 

Finally, the darkest gray pixels of the intermediate fuzzy object can be 

converted to black (1) (Figure 10.26). 

 
Figure 10.26: Final step in the shrinking of an object 

The result is an object on which the entire set of retinal processes described so 

far can be applied, in order to recognize its shape. Naturally, the representation of 

the original object in Figure 10.23 will not be merely “an ellipse”, but “an ellipse 
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made of many short lines”. Phaeaco cannot reach the description “wiggly line” at 

present, because it lacks the image-processing acuity to see the way the short lines 

are arranged with respect to each other. 

There are two important parameters in the above algorithm: one is the factor 

by which the original object is shrunk, and the other is the “fuzziness” factor, i.e., 

the size of each n × n neighborhood that gets converted to a gray pixel. In practice 

a shrinking factor of 0.5 and a fuzziness factor of 5 × 5 usually yield acceptable 

results. 

10.3.17 Process Z 
Z is a retinal process that enlarges (“zooms in”) small objects, applying the 

magnification algorithm announced in §5.1.5. The algorithm is the same as the 

one described in process S. The only difference is in the value of the parameters: 

the shrinking factor now becomes a “zooming factor” with a value of 2, and 3 × 3 

pixel neighborhoods of the original small object are converted to fuzzier 

neighborhoods twice their size (6 × 6). Figure 5.14 shows an example of the 

magnification process, reproduced below as Figure 10.27. 

 

 

   

 
(a)  (b)  (c)  (d) 

Figure 10.27: Successive steps in zooming small objects 

The steps shown in Figure 10.27 are: original input (a); “fuzzy magnification” 

(b), as described above; turning gray pixels to black or white using a suitable 

threshold (c); and a moderate degree of “thinning” (d). 
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10.3.18 Other image-processing functions 
In addition to the retinal processes, there are many other algorithms for deriving 

pixel-based features of the input that can be called when codelets at the cognitive 

level examine various facets of the representation. The algorithms for deriving the 

convex hull and computing the area of an object are discussed below. 

Procedures described in the image-processing literature for computing the 

convex hull of a set of points usually assume that all points are available before 

the procedure starts. But Phaeaco has to perform all tasks incrementally, not 

knowing or anticipating when the input will be completely processed. 

 
       

(a)  (b)  (c)  (d) 

Figure 10.28: Successive stages in the derivation of convex hull 

Figure 10.28 shows four successive steps in a convex hull construction. The 

point added at step (b) causes the deletion of two edges and one point that 

previously belonged to the convex hull (dashed lines). At step (c) the deletion of a 

single edge takes place. Finally, at step (d) the new point is ignored. 

Last but not least, the computation of the area of an object depends on 

whether the object is convex or concave. If it is convex, the area of its convex hull 

is computed by a simple triangularization of the object. If the object is concave, a 

Monte Carlo method is used: a large number of random points in a box 

surrounding the object are generated, and the area is found by dividing the 

number of points that are located in the object by the number of points that are 

generated in the visual box. 



    

CHAPTER  ELEVEN 

Putting the Pieces Together 
11 Putting the Pieces Together 

11.1 How BP’s are solved 

Given a BP, Phaeaco constructs a visual pattern from the six boxes of the left 

side, and another visual pattern from the six boxes of the right side. It then 

compares the patterns, attempting to spot some difference between them. This is 

Phaeaco’s method of solving BP’s, in a nutshell. 

In §8.3 it was explained that a visual pattern is formed as an “average” of a 

group of objects, and at the same time the group itself is being formed. One might 

well ask whether, given a BP, Phaeaco discovers on its own the two groups of six 

boxes by following its general group-formation principles. The answer is “no”, 

because Phaeaco is designed to know what a BP is, and how to handle it. Thus, 

the identification of the notion “group of six boxes of a BP side” is not actively 

pursued by the program. What is actively pursued is a visual pattern that 

summarizes the six boxes on either of the two sides. In some cases, as will be 

explained later, more than one visual pattern can be formed on each side. 

Three distinct mechanisms that appear to be involved when a person attempts 

to solve a BP82 are discussed in the following subsections. 

                                                 
82  Personal observation, in agreement with the intuitions of other, experienced BP solvers. Special 
devices would be required to confirm this observation under controlled conditions, such as an eye-
tracking apparatus. 
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11.1.1 First mechanism: hardwired responses 
There are exactly two BP’s in Bongard’s collection that can be solved by means 

of mechanisms hardwired in the human brain. These are BP #3 (“outlined vs. 

filled”, Figure 1.2), and BP #1 (“nothing vs. something”, Figure 1.5). 

 
Figure 11.1: Contrast between colors, white vs. black 

Figure 11.1 illustrates the principle behind the solution of such problems. The 

human visual cortex includes the color-specializing area V4 (e.g., Zeki, 1993), 

which is stimulated immediately and involuntarily given two contrasting colors. 

Although the response in V4 is instantaneous, a few seconds are required before 

subjects reach the answer for BP #3 (average response time 7.9 s; see Appendix 

A). Possibly subjects are slowed down by multiple high-level perceptual 

processes that occur simultaneously, such as the perception of the frames of the 

visual boxes that interfere with the contrasting colors, and a large number of other 

features (shape, size, position, etc.) that compete for attention. In principle, 

verification of the solution (i.e., examining the boxes one by one) is unnecessary 

for such BP’s; but in BP #3 it is possible that subjects perform a small amount of 

verification, because half of the boxes contain very small objects that do not 

contribute significantly to the perceived color. In BP #1, the solution is perhaps 

initially hinted at by the contrast between the whiteness of the left side and the 

existence of black regions and black lines on the right side, but it is expressed as 
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“nothing vs. something” (or “no object vs. some object”, as Phaeaco puts it), 

because it is not logical to see this problem as a contrast between white and black. 

There are other BP’s, beyond Bongard’s collection, which also benefit from 

the hardware of the brain. Examples are: BP #157 (reversing the foreground and 

background colors), BP #158 (“some slope vs. a different slope”), and BP #196 

(“light-colored texture vs. dark-colored texture”); see these BP’s in Appendix A. 

A hypothetical BP that includes animated figures on the left and still figures on 

the right would be another such example, benefiting from area V5 of the visual 

cortex, which detects motion. 

Phaeaco, like human solvers, reaches the solution of BP#3 very quickly, and 

usually (98% of the time) prints the answer without verifying it for each of the 12 

boxes. But the mechanisms that Phaeaco uses to achieve this apparent human-like 

performance differ from the above-mentioned mechanisms of the human brain. 

Specifically, as was mentioned in the introduction to this chapter, Phaeaco 

constructs a pattern that summarizes each side. The variety of shapes on each side 

of BP #3 results in the formation of a single pattern per side. To understand why 

this is so, consider the abstractions in Figure 11.2. 

 
(a) (b) (c) 

Figure 11.2: Different cases of group formation depending on the distances between points 

Each of the points in Figure 11.2 stands for the representation of the contents 

of a BP box. The distance between two points corresponds to the psychological 
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difference between the contents of two boxes. In Figure 11.2a the points are quite 

distant from each other, but they form a single group; therefore they can be 

summarized by a single pattern-point, which can be imagined at the barycenter of 

the group. This situation is analogous to the right side of BP #1, which includes 

boxes with shapes that appear as different as shapes can be. In Figure 11.2b the 

points do not differ as much, but they still form a single group. This is similar to 

either of the two sides of BP #3. Finally, in Figure 11.2c the points form two 

distinct groups. There are very few BP’s with boxes on one side that can form 

more than one group. An example of such a BP is shown in Figure 11.3. 

 
Figure 11.3: BP #13, in which two groups (patterns) of shapes are perceived per side 

On the left side of BP #13 in Figure 11.3 two distinct patterns can be 

discerned: vertical rectangles and horizontal ellipses. Similarly, on the right side 

there are vertical ellipses and horizontal rectangles. 
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Co sider again the case of BP #3. After aco takes a cursory, overall look 

at all 2 boxes in parallel, it constructs a  pattern for each side. The two 

patter  typically have the structure shown ure 11.4. 
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causes Phaeaco to halt immediately and output the correct answer without 

verifying it on any of the 12 boxes. 

On first thought, it might appear inappropriate for Phaeaco to employ a 

mechanism (“zero variance”) very different from the one humans use, only to 

solve BP’s in a time comparable to human performance. But this is yet another 

example of Phaeaco being faithful to its philosophy, summarized in Figure 4.9: 

humans and machines differ fundamentally at lower levels; the challenge is to 

make machines converge with humans at higher levels. 

Phaeaco homes in quickly on differences in textures for an additional reason: 

codelets responsible for registering the texture of objects have high urgencies, and 

so textures are among the first features that are seen. This bias was built into the 

architecture with the knowledge that perceiving and contrasting colors is similarly 

hardwired in humans. 

The previous discussion on comparing samples with zero variance suggests a 

way that, in theory, should cause Phaeaco to respond in an unhumanlike way. For 

instance, consider a BP in which the same object (down to the last pixel) is 

repeated six times on the left side, and a slightly different object is repeated six 

times on the right side. Conceivably, the sample of object areas on either side 

should have a variance equal to zero, and because the average values of the two 

compared areas would be different (however slightly), Phaeaco would halt 

immediately and announce with absolute certainty the difference in sizes, whereas 

the human eye would have trouble discerning the minute difference. 

In practice, however, this does not happen. Recall that Phaeaco’s processing is 

nondeterministic, because it is randomized at the earliest possible stage (§10.3.1). 

Thus, although the areas of the six objects on each side would be very similar, the 

probability that they resulted in an identical number would be practically zero. 
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11.1.2 Second mechanism: the holistic view 
Hardwired responses aside, experienced solvers seem to employ an initial strategy 

when confronted with a BP, in which they conduct a panoramic overview of the 

problem for a brief period of time (perhaps 2–3 seconds), without focusing for too 

long on any box in particular, in an attempt to see differences “jumping out” at 

them, as quite a few people report. If no difference becomes apparent in this brief 

“holistic” comparison of the two sides, they then resort to an “analytic” 

examination of individual boxes, which is described in the next subsection. 

Phaeaco acts similarly. It processes all 12 boxes in parallel, distributing its 

time among the boxes in such a fine-grained manner that for all practical purposes 

the processing of the different boxes appears to occur simultaneously. During this 

time, patterns for the two sides are formed83 and compared against each other, 

applying the group formation methods of chapter 8. If more than one pattern is 

generated per side (as in BP #13, Figure 11.3), their disjunction is represented by 

placing the patterns under a Necker view node (§7.4.11). 

The comparison might reveal that the patterns differ in structure, as in BP #6 

(“triangle vs. quadrilateral”, Figure 1.1), or BP #97 (“triangle vs. circle”, Figure 

2.7). Another possibility is that something exists in one pattern, but is missing 

from the other pattern, as in BP #1 (“nothing vs. something”, Figure 1.5) and BP 

#5 (“no curve vs. some curve”, Figure 5.6). A third, and more common, scenario 

is that the value of a feature on the left side differs from the value of the same 

feature on the right side, as in BP #2 (“large vs. small”, Figure 1.3). The case of 

differences in a feature value is worthy of further consideration. 
 

83  A subtle technical point here is that the representation of each box is continually updated as 
long as retinal processing takes place, which raises the question of the proper time to consider all 
six representations of the boxes and form one or more patterns out of them. Phaeaco waits until 
the activation of a box (as explained in §7.2) drops below a threshold. The threshold is low enough 
to allow a more-or-less complete representation of the box contents to be formed. 
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Consider again BP #2 (Figure 1.3). Table 11.1 lists the areas in pixels of each 

of the 12 objects, as they were found in one particular run by Phaeaco. (These 

values differ from one run to the next, since the processing is nondeterministic, 

but they have roughly the values given in the table.) 

Box Area Box Area 

1A 1348 2A 128 

1B 1662 2B 134 

1C 1986 2C 244 

1D 1994 2D 104 

1E 2491 2E 133 

1F 2570 2F 164 

Average: 2008.50 Average: 151.17

Std. dev.: 470.13 Std. dev.: 49.33 

Table 11.1: Boxes and areas of objects of BP #2 

The two samples can be compared using the methods and formulas of §8.2. 

They can also be appr ated by tw ssians, as shown in Figure 11.5. 

Figure 11.5: Th
oxim
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e two distributions
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The curves are plotted in Figure 11.5 only for illustration purposes. In reality 

the samples are not guaranteed to originate from normal distributions, because the 

areas of objects can be arbitrary. But Student’s t distribution (which is used by 

Phaeaco, see §8.2.1) generally resembles a normal distribution. Also, the two 

curves are shown with equal altitude in Figure 11.5, which is clearly wrong. Since 

the area under each curve must equal 1, the second curve must be very flat; but if 

it were plotted realistically, it would not be perceived as the Gaussian-like curve 

that it is. 

In spite of these liberties in Figure 11.5, the salient point is the minute area of 

overlap of the two curves. The distributions of the two areas (as suggested by the 

two samples), are easily separable, because their intersection is very small. When 

this happens, it is easy for Phaeaco to direct its attention to the idea “difference in 

areas”. In contrast, if the two suggested distributions were as depicted in Figure 

11.6,84 then the probability that Phaeaco would notice the difference is much 

smaller. 

 
Figure 11.6: Two difficult to separate distributions 

How can Phaeaco’s attention be directed to one feature or another? The 

answer is that there are codelets that visit the structures of the patterns, examining 
                  

dist
 

ributions of the coordinates of the cent84  An example would be the ers of the objects in BP #2. 
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their features. These codelets (and their Coderack), which are distinct from those 

that create the initial representations in each box (as described in chapter 7), 

belong to a higher conceptual level, specifically concerned with the solution of 

BP’s. In other words, these are Bongard-specific codelets. Some codelets are 

assigned the task of identifying features85 and computing the probability that their 

distributions are distinct, as described above. Other codelets follow up the initial 

ones, but with an urgency proportional to the probability of a difference in 

distributions, as already computed by the initial codelets. Thus, a “sharp” 

difference has a higher probability of being noticed than a “fuzzy” one, a 

calculation that considers both the inherent significance and the current activation 

of the Platonic feature in LTM (Hofstadter, 1995a, p. 226). 

Once a featural difference is noticed, Phaeaco forms the idea that this might 

be a solution of the given BP. To “form an idea” for a solution in the BP domain 

means to construct a pair of representations that describe the idea. For example, if 

the idea is that the sizes of objects differ, as in BP #2, then a pair of nodes of the 

areas of the patterns suffices. Figure 11.7 shows the representation of this very 

simple idea for a solution. 

 area

x: 2008.50
s: 470.13

area

different

x: 151.17
s: 49.33

Figure 11.7: An idea for a solution in BP #2 

 
85 The urgency of such codelets depends on the salience of e corresponding Platonic features in 
LTM. For example, the urgency of a codelet that compares textures on the two sides generally is 
higher than the urgency of one that compares the x- or y-coordinates of barycenters. 

th
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Ideas for solutions can be far more complex. For example, a solution that 

contrasts two different patterns (e.g., “triangle vs. circle”, BP #97) has the entire 

patterns connected in the same way the two nodes are connected in Figure 11.7. A 

solution based on the presence of something on one side and its absence on the 

other side has the structure that is present linked to a special “missing” node. 

Next, Phaeaco attempts to verify the validity of the idea by examining each of 

the 12 boxes in sequence. During the verification of a featural difference, the 

following condition is examined: it is not sufficient that the features differ greatly, 

because in BP solutions it must also be true that the ranges of the two samples do 

not overlap. For example, following the samples of Table 11.1, the range of the 

large areas is from 1348 to 2570, and the range of the small areas is from 104 to 

244. Thus, the minimum value of the higher range (1348) is larger than the 

maximum value of the lower range (244). If this were not the case, the idea would 

be rejected. This observation provides a justification for explicitly storing the 

minimum and maximum values in the structure of a statistical table (Table 7.1). 

During the verification of the solution, Phaeaco takes a final look at each box 

that is being examined. Thus, if the solution is found at the end of the holistic 

stage, each box is seen twice: once during the holistic stage (in parallel with all 

other boxes), and once more during the verification. The resulting two 

representations are matched, and a single pattern is made, akin to a sample of two 

elements. Phaeaco does this in order to improve the representation that it obtained 

from the single observation during the holistic look of the problem. Recall that 

Phaeaco’s vision is not as sharp and accurate as is human vision, so it is 

advantageous for it to examine each box once more before issuing a judgment. 

If the idea fails to be verified on the pattern thus obtained, it is rejected, and 

Phaeaco enters the next, “analytic” stage of trying to solve the BP. 
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11.1.3 Third mechanism: the analytic view 
If the holistic stage fails to produce a solution (either because the verification of 

an idea failed, or because the patterns of the two sides were identical, and so no 

idea for a solution was generated), Phaeaco enters its analytic stage. Individual 

boxes are selected nearly randomly (more on this later), and reexamined in an 

effort to come up with fresh ideas. But how does Phaeaco come up with new ideas 

when the input is given and unchanging? 

Part of the answer stems, once more, from Phaeaco’s nondeterministic nature. 

When a box is watched multiple times, its contents can be seen in different ways. 

These differences can be consequences of the processing that took place in the 

other boxes, which can prime concepts in LTM and thus influence the way the 

contents of the current box are interpreted. In addition, as was explained in 

chapters 7 and 10, a single look at a box does not result in a complete 

representation including everything there is to be perceived in the box. On the 

contrary, every iteration reveals only a partial view of a box’s contents, but each 

partial view enhances the pattern created by the cumulative effect of all the looks. 

Suppose, however, that the representations of the boxes do not change at all, 

no matter how many times they are seen and re-seen. Even then, Phaeaco would 

still try to come up with new ideas for a while. (Later it will be explained what 

makes Phaeaco give up.) Codelets are created at this stage to look at 

representations in boxes and come up with ideas. For example, if there is a 

triangle in a box, a codelet might notice the numerosity node representing “3 line 

segments”, and create the idea: “Could this problem be about counting lines?” If 

this idea proves unfruitful, probable future ideas include: “Could this problem be 

about counting things in general?” and “Could this problem be about 3-ness?” 
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The urgency of such codelets causes specific ideas to be tested first and their 

generalizations later, after the specific ones have failed to solve the problem. 

A problem that is also addressed by Phaeaco is the avoidance of verifying 

ideas that have already been verified and shown to be wrong. It is natural for an 

intelligent system to make errors, but it is an indication of mindlessness to repeat 

errors uncritically (Hofstadter, 1985, pp. 526-546). It is not wrong or unhuman to 

regenerate an idea — human solvers seem to keep on coming back to the same 

failed ideas all the time while solving BP’s — but it is wrong to seriously 

consider and proceed to verify a failed idea. Phaeaco solves this problem by 

linking all verified-and-failed ideas to a master node (Figure 11.8). 

 

all 
ideas

idea 3 idea n idea 2idea 1 

Figure 11.8: Representation of tested ideas 

Some of the links connecting the master node (“all ideas”) to individual ideas 

in Figure 11.8 are shown grayed, reflecting the lower strength of these links. This 

is important, because what is shown in Figure 11.8 is not a traditional linked list, 

but a more elaborate structure that suggests the solution to an interesting cognitive 

problem. To illustrate this, consider the following example. 

A person is asked to say the name of a month of the year, at random. The 

person answers: “October”. The question is repeated with the condition that the 

new random month must be different from the previous one, and the person 

answers: “April”. After some repetitions, when the number of randomly generated 
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months approaches (but is not yet equal to) 12, the person will probably pause 

briefly, trying to figure out which month names have not yet been used. During 

this period of hesitation the person will probably recall a few already generated 

names, and will subliminally reject them with a thought that, if expressed in 

words, would amount to: “No, I have already said that.” This is the problem that 

the representation in Figure 11.8 helps to solve. The mechanism works as follows. 

When an idea is generated by a codelet it is compared in parallel86 with all the 

ideas linked to the master node, as in Figure 11.8. Although the general pattern-

matching procedure (§8.2) is used for the comparison, the idea is rejected only if 

it is identical to one of the verified-and-failed ones. If an identical idea is found, 

the strength of the link of that idea is enhanced by an “injection” according to the 

way activations increase (§7.2), and the idea is not added to the list. Otherwise, 

the idea is added to the list, connected to the master node with a link of strength 1 

(the maximum value), and the activation of the master node is enhanced by a 

small amount (a discrete step of enhancement, §7.2). 

The storing of strengths on the links implies that some of the generated ideas 

can be forgotten, because their link strengths dissipate as time goes by and can 

become effectively zero. In practice, solution ideas cannot be forgotten in the 

short period during which a BP is solved, but the mechanism is general. 

Also, suppose the person performing the above-mentioned month-listing 

experiment, after succeeding in uttering all 12 months, is given the following 

request: “Now forget that you just listed all the months, and let us repeat the 

experiment from the beginning: please produce a new random list of the months.” 

The person is in a position to succeed in this new task, feeling very small 

interference from the previous attempt at producing a list. This ability is also 

 
86  But parallelism is of course implemented by codelet interleaving on sequential machines. 
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important in Phaeaco’s case: when a new BP is presented, the master node of 

ideas of the previous BP is eliminated in the Workspace, along with its linkages, 

and a new master node is created for the new problem. The small interference a 

person would feel in generating a new list can be explained by the priming of 

ideas in the LTM. However, Phaeaco at present does not implement the notion of 

copying ideas to the LTM after a BP is solved. (It can prime concepts in LTM, but 

does not store ideas, i.e., solutions of BP’s.) 

A final question is: when does Phaeaco stop coming up with new ideas and 

quit trying to solve the BP? The answer is, when it “feels bored”. Phaeaco’s 

boredom in solving BP’s is implemented in a very simple manner: it is the 

activation of the master node. Recall that each new idea enhances the activation of 

that node by a small amount, but the lack of new ideas causes the activation to 

drop gradually. If the activation drops below a certain threshold, Phaeaco gives 

up.87 By adjusting the value of the threshold, one can make Phaeaco appear more 

or less insistent in solving BP’s, just as human solvers differ in this aspect 

according to their personality traits. 

In the beginning of this subsection it was mentioned that in the analytic stage 

boxes are selected and examined again “nearly randomly”. The selection is not 

completely unbiased. Boxes with simpler contents are selected more often. This is 

because experienced BP solvers report feeling that it is easier to find the essence 

of a BP in a box with simple contents than in a complex one. The simplicity of the 

contents of a BP is reflected directly in the simplicity of its representation: an 

elementary graph-visiting process can estimate the simplicity of a representation 

(e.g., the number of nodes can serve as a crude estimate). 

 
87  Therefore, instead of “boredom”, the opposite term “motivation” appears more appropriate: 
when the activation drops below a certain threshold, Phaeaco feels no motivation to continue. 
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Finally, the previous brief description of the process of verification might 

erroneously suggest that once an idea fails to be verified on a single box, it is 

immediately discarded. But what if 11 of the 12 boxes strongly suggest one idea, 

but the twelfth box fails to confirm it? Consider Figure 11.9. 

 
Figure 11.9: The “trickster” BP #192 

Most solvers perceive the direction of the orifice in each of the objects in BP 

#192 (Figure 11.9). On the left side, it looks like the orifice points to the left, 

whereas on the right side it points to the right. Or does it? A closer look at the 

bottom-right object of this problem reveals that its orifice points to the left. Could 

this be an error? Most solvers focus their attention again and again on this box, 

unwilling to discard without further thought an idea that seems to work so well on 

all the other boxes. Some conclude that the designer made an error. Others accept 

the ineffectiveness of this idea, often proceeding to find the real solution, which is 
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that the objects on the left are elongated in the vertical direction, whereas the 

objects on the right are elongated in the horizontal direction. 

Phaeaco does “the same”. If most of the boxes (even on a single side, e.g., 

four or five out of six) have confirmed one idea, but the remaining boxes (one or 

two) do not seem to confirm it on the first verification effort, Phaeaco will persist 

in trying to verify the idea on the remaining boxes for a while, looking at them 

again and again in an attempt to find by chance an alternative view 

(representation) of their contents. The stronger the confirmation of the idea from 

the remaining boxes, the more Phaeaco will attempt to see the failing box or 

boxes. Also, recall that Phaeaco’s low-level vision is not as sharp as the vision of 

the human eye, so it is entirely possible that some hard-to-see feature was missed 

in the earlier attempts on a box. By looking repeatedly at the input, Phaeaco 

increases the probability of noticing what it missed. 

11.2 What Phaeaco can’t do 

There are a large number of perceptual primitives as well as abstract principles of 

visual cognition that must be implemented in any system that aspires to solve all 

100 original BP’s (and, consequently, most of the BP’s in the extended collection 

of 200, listed in Appendix A). The most important of these primitives and 

principles are discussed in the present section. But it must be emphasized that 

these have been omitted only from the present implementation of Phaeaco; their 

omissions do not constitute basic architectural flaws that cannot be addressed in 
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future enhancements.88 The present section should be construed precisely as a list 

of suggested implementational enhancements. 

11.2.1 Conjunction of percepts 
Often it is necessary to combine two or more notions in order to arrive at the 

solution of a BP. A typical example is given in Figure 11.10. 

 
Figure 11.10: BP #28, requiring a combination of simple percepts 

The solution of BP #28 (Figure 11.10) is that on the left there are more filled 

circles than outlined circles, whereas the relation is reversed on the right side. 

Each box of BP #28 uses several concepts (“outlined”, “filled”, “triangle”, 

“circle”, etc.), and the solver must select a particular (arbitrary) combination of 
                                                 
88  The title of this section is an allusion to Hubert Dreyfus’s “What Computers [Still] Can’t Do” 
(Dreyfus, 1972; 1992), an early philosophical criticism of A.I. But, unlike Dreyfus’s work, which 
conveyed an implicit message of what computers will never do, the present section aims merely to 
suggest tasks that future BP-solvers can (and must) do. 
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them to arrive at the solution. The arbitrariness and the combinatorial nature of 

the task make such BP’s rather unattractive, and present an understandable 

obstacle to human solvers. (Not surprisingly, none of the 21 subjects that 

attempted to solve this problem found the solution.) Nonetheless, being able to 

combine percepts, consider the resulting groups of objects, and perform a 

rudimentary mental combinatorial search is an ability the average human solver 

has.89 This ability is also related to the notion of “noise”, considered next. 

11.2.2 Screening out “noise” 

 
Figure 11.11: BP #37, where the squares are mere distractors 

Almost every time a problem such as BP #28 is presented, a related cognitive 

ability is also employed: concentrating only on a part of the available input, and 

                                                 
89  BP #28 should not be used as evidence against this statement, because there are easier BP’s that 
support it, including  #26, #32, and #81. 
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treating the rest as “noise”. Naturally, noise appears essentially in every BP, 

because it is virtually impossible to construct a BP in which every available 

percept participates it its solution. Sometimes, however, noise is purposefully 

inserted in the input by the designer, turning an otherwise rather easy solution into 

a harder (and sometimes more interesting) one. 

Figure 11.11 shows BP #37, in which the squares are superfluous. Its solution 

is: “triangle above circle vs. circle above triangle” (where “above” means that the 

y-coordinates of the centers of the objects are compared). This problem appears in 

Bongard’s collection immediately after one that has exactly the same solution but 

lacks distractors. When people are presented the two problems in Bongard’s order 

(BP #36, BP #37) they usually solve easily BP #37, having been primed with the 

solution of BP #36. But if the two problems are not presented in sequence, BP 

#37 can prove to be quite hard to solve. In the experiment reported in Appendix 

A, subjects were shown BP #37 only after 38 more BP’s had been presented 

following BP #36. As expected, although BP #36 proved relatively easy to solve 

(correct: 23; incorrect: 2; no answer: 5), BP #37 turned out to be quite difficult 

(correct: 3; incorrect: 5; no answer: 17). In general, adding noise can turn some 

otherwise easy BP’s into extremely difficult ones. 

11.2.3 Applying a suspected solution on all boxes uniformly 
Sometimes a solution is suspected on some (perhaps most) boxes, but the contents 

of a few other boxes do not lead naturally to this solution. In other words, if the 

objects in these exceptional boxes were seen in isolation, it would not be easy to 

think of the statement that solves the BP, because it is only in the context of the 

entire problem that a different perception of these objects is evoked. An example 

of this principle is shown in Figure 11.12. 
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Figure 11.12: BP #7, necessitating re-parsing of the contents of some boxes 

Some of the boxes in BP #7 (Figure 11.12) contain elementary objects that, 

out of context, could be described very simply as “an ellipse”, “a rectangle”, and 

so on. But other boxes contain complex objects, some of them made out of a large 

number of lines, which leads Phaeaco to apply the shrinking algorithm (§10.3.16) 

and to derive their convex hulls. These actions generally suffice to allow Phaeaco 

see the complex objects as “something elongated”, and even to perceive their 

direction, which is vertical on the left, and horizontal on the right. Thus, in order 

to reach the solution, the solver constructs a procedure that is applicable in many 

boxes: 

• Shrink the object and/or derive its convex hull 

• Observe that the result is elongated 

• Perceive the direction of the primary axis of the elongated object 
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It is necessary to be able to apply uniformly, to all boxes, a procedure that was 

created “on the fly”. In this way, the directions of simple objects, such as the 

ellipses and rectangles in BP #7, can also be perceived. 

A different example will illustrate the need to have the ability to “complexify” 

the descriptions of boxes when simpler descriptions are perceived at first. 

 
Figure 11.13: BP #137, where there is something in nothing 

Consider BP #137 (Figure 11.13). The empty box on the left side is initially 

perceived simply as an empty box. But after one realizes that the solution involves 

comparing the number of dots with the number of lines that make up the closed 

figure, one can easily see that the empty box stands for the relation: 0 = 0. 

Such “forced descriptions” appear all the time in BP’s, especially in those that 

require the solver to re-interpret a single object as a degenerate group made of a 

single object (see BP’s: #81, #89, #90, #156, #166, and #167). 
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11.2.4 Pluralitas non est ponenda sine necessitate 

 
Figure 11.14: BP #46, in which Ockham’s razor cannot be ignored 

Consider BP #46 (Figure 11.14). Human solvers effortlessly do something that 

any programmed solver, such as Phaeaco, must be instructed about explicitly and 

painstakingly: they see a circle hidden under a triangle on the left, and a triangle 

hidden under a circle on the right. But “in reality” there are no such shapes. 

Instead of circles on the left, the raw data contain arcs and circular sectors (plus a 

filled circle with a triangular hole). One might claim that in boxes I-A, I-C, and I-

F there is not even a triangle: instead, there is a nearly 270°-wide circular sector 

and a line-string, two of whose three line segments are collinear with the two radii 

of the circular sector (Figure 11.15a). Why does the human eye never come up 

with a description like this, or any of the other ones shown in Figure 11.15, as a 

first impression? 
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(a) (b) (c) (d) 

Figure 11.15: Unnatural parsing possibilities for box 1C of BP #46 

Figure 11.15a

The answer “because the description ‘triangle + circle’ is the only one that 

makes sense” begs the question: why does it make sense? A more appropriate 

answer is that the description “triangle + circle” is of minimum length. To state it 

otherwise, Ockham’s razor can eliminate all possibilities shown in Figure 11.15 

because “triangle + circle” is the most parsimonious description of all.90 

To arrive at the “minimum length description” a viewer must not only have 

visual patterns stored as concepts in LTM, but also be able to perform visual 

operations such as continuing curves along their curvature (beyond the points 

where they are visibly interrupted), and extending straight lines up to the point of 

their intersection. Such operations should appear “irresistible” if they result in 

shapes that match very well with LTM concepts. This ability, by the way, also 

suggests a way to explain the well-known Kanizsa illusion (Figure 11.16). 

 
Figure 11.16: The Kanizsa triangle illusion 

                                                 
90   It is parsimonious assuming that the viewer is familiar with the visual patterns of a triangle and 
a circle; if the viewer were from another world, where “pacman-like” and “angular-C-like” objects 
were more familiar than triangles and circles, perhaps the parsing of  would be 
considered more parsimonious. 
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11.2.5 Meta-descriptions 
Related to the minimum-length description ability (or Ockham’s razor) is the 

ability to perceive descriptions (representations) themselves and infer their 

properties at a meta-level (Hofstadter, 1979, pp. 656-661). For example, the 

decision regarding which of two descriptions is shorter implies “looking at” and 

measuring representations. But this is not unusual; indeed, there are many other 

situations that would call for representations to be examined. Another example is 

the perception of the recursive “depth” of a relation. Besides BP’s #70 and #71 

(Figures 1.12 and 1.13, respectively), BP #186 in Figure 11.17 also demonstrates 

a relation (“is made of”) generating multiple levels of description. 

 
Figure 11.17: BP #186: one level of detail vs. two levels of detail 
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Being able to reflect upon one’s own thoughts is a hallmark of human-like 

intelligence (see also §9.2). Metacat (Marshall, 1999) and Letter Spirit (Rehling, 

2001) are systems that reportedly have this ability.  

11.2.6 Figure–ground distinction 
The problem of distinguishing contents from background (or making a figure–

ground distinction, as it is usually called) was mentioned in the context of retinal 

processing (§10.1.1). But this problem is primarily conceptual, which is why the 

heuristic described in §10.1.1 appears inadequate. The only BP that addresses this 

problem at a conceptual level is BP #98 (Figure 11.18). 

 
Figure 11.18: BP #98, an exercise in figure–ground distinction 
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BP #98 would be a repetition of BP #6 (“triangles vs. quadrilaterals”)91 if it 

were not for the patterned background that interferes with the “main” shapes. 

Essentially, Phaeaco already possesses the most important mechanisms for 

solving this problem. The key observation is that of all the lines (both straight and 

curved) in a box, some “belong together” because they have many common 

properties, and so they form the background. The remaining lines do not belong to 

the previous larger category and thus make a category of their own (the 

foreground). It is a categorization problem. Unfortunately, there are many more 

details that prevent Phaeaco’s current implementation from reaching the solution 

in this problem,92 but the main principle is already in place. 

Interestingly, this type of perceptual problem has been used in recent years to 

prevent machines from creating internet accounts, participating in discussion 

forums (thus flooding discussions with advertisements), etc. Typically, the user is 

presented with input as s 9. If the user cannot type the 

alphanumeric characters in ield, it is deemed a computer. 

Figure 11.1

91  BP #6 was answered correct
But, surprisingly, BP #98 took
answer: 4). This might be becau
the end (98th), so only the bette
BP-solving task. 
92  For example, Phaeaco shoul
should be able to see the simi
applying the correct idea discov
F, and II-E), as discussed in §11
hown in Figure 11.1

 a provided data entry f

LAEDGIB
     

 
9: Typical input expected to baffle computers 

 
ly in an average of 19 sec (26 subjects; wrong: 2; no answer: 3). 
 only 12 sec for those who solved it (9 subjects; wrong: 3; no 
se BP #6 appeared early (3rd), whereas BP #98 appeared close to 
r solvers reached it, who meanwhile had gained experience in the 

d not get bogged down in the countless intersections of lines, but 
larity in wavy lines (currently it cannot), and should insist on 
ered in some boxes to the most difficult of the other boxes (I-D, I-
.2.3. 
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Variations of this type of problem exist, but they are all based on the idea of 

figure–ground distinction. However, a “Phaeaco” that was free from the burden of 

having to solve a BP and was coupled with an optical character-recognition 

module could easily solve this problem. The prediction is that web-page designers 

in the future will have to resort to cognitive problems that exploit more 

quintessentially human abilities if they want a test that will automatically 

distinguish humans from computers. 

11.3 Summary 

The three mechanisms for solving BP’s that are assumed to be employed by 

human solvers (hardwired, holistic, and analytical) have been implemented in 

Phaeaco in ways that simulate human performance, but do not emulate the human 

procedures, especially at the lower, hardwired level. In other words, no claim is 

made that Phaeaco accurately models a human BP solver, although there is a 

nonzero probability that it could pass successfully a Turing-test inspired 

“imitation game” in which Phaeaco’s BP-solving performance could fool a judge, 

who would mistake Phaeaco for a person. 

There are many important issues that have not yet been incorporated into the 

current implementation. However, none of these issues indicates an inherent 

limitation of the architecture. Future enhancements implemented within the 

existing architectural framework should be able to render solvable most (if not all) 

of the BP’s listed in Appendix A. 

 



    

CHAPTER  TWELVE 

Beyond Vision 
12 Beyond Vision 

An assessment of the implications of the present work is offered in this final 

chapter, with an emphasis on related philosophical issues. 

12.1 On the primacy of vision 

According to a well-known view in cognitive science, the most abstract and 

seemingly perception-free thoughts in human cognition are based on metaphors of 

visual perception. This does not mean that abstract thinking necessarily involves 

manipulation of visual images, but that it evolved from explicit, visual-only 

perception (e.g., Johnson, 1987; Lakoff and Johnson, 1980). The ample use of 

spatiotemporal analogies in language has been used in support of this view: a 

person is “above” somebody else in a ranked hierarchy, and scores “below” 

average in a test; a mood can be “high”, and a profile “low”; people must get 

“over” an unfortunate event, and act “under” “pressure”; a “top” executive 

“reshuffles” a “cabinet” from the “bottom-up”, and tries to make “ends” “meet” 

by “moving” a “meeting” to a later date; an “appointed” attorney makes a “sharp” 

argument “before” the “court”; the list is endless. 

The above is compatible with Hofstadter’s view of analogy being at the core 

of cognition (§8.4). Each of the above abstractions causes an unintended analogy 

between spatiotemporal and conceptual structures, which passes completely 

unnoticed, because it has become automated in colloquial language. 

 333   
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 If metaphors, or analogies (in Lakoff’s and Hofstadter’s terms, respectively), 

are behind such figurative uses of words that originated as primitives from the 

visual world, one would expect that a cognitive architecture originally proposed to 

solve problems in vision should also be extensible to handle representations that 

are less literal, and to some degree more detached from vision. Indeed, some 

examples might serve to illustrate how Phaeaco’s structures could be abstracted. 

Consider the following sentence: 

Joe kissed Mary on the cheek 

It conveys not a particular string of English words or Roman letters, but an 

idea. The sentence could have been given in Turkish (Yusuf Meryem’i 

yanağından öptü), in Greek (ο Ιωσήφ φίλησε τη Μαρία στο µάγουλο), in 

American Sign Language, or in any other system capable of expressing this 

thought. Suppose a cognitive system already knows the representations of 

concepts such as the individuals Joe and Mary (both instances of the concept 

“person”), an act of kissing, and how cheeks are related to people. How could 

these concepts be put together to form a single thought? Consider starting with 

something analogous but simpler, which we already know how to represent in 

Phaeaco’s terms: 

Line λ1 touches line λ2 at point P 

This could be a sentence generated by a module that looks at the input shown 

in Figure 12.1 with the purpose of describing in words what it sees. 

 
λ1

λ2

P

Figure 12.1: “Line λ1 touches line λ2 at point P” 
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If the previous input presents no representational challenge for Phaeaco, a 

slightly more challenging situation can now be considered (Figure 12.2). 

 
Figure 12.2: The relation “touches”, abstracted slightly 

The objects in Figure 12.2 appear to be related in an analogous way to that of 

Figure 12.1. The relation is slightly more complex (how much of the touching 

object is hidden under the touched one? If their common region is not a line but a 

point, should this information not be included in the representation?) but it can 

still be described by the word “touch”. And it is possible to continually make the 

relation  more complex. 

 
Figure 12.3: Is this the same relation? 
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The object in Figure 12.3 could be a familiar (albeit somewhat primitive) 

hammer, or it could be the depiction of an object supporting another one. In any 

case, we would probably feel comfortable using a new verb, such as “holds”, or 

“supports”, for the relation, and new nouns, such as “head” and “handle” for the 

constituent objects. But still there would be little doubt that, given suitable 

primitives, all these visual constructs would be analogous, and thus representable 

by means of the same principles. More complex representations would result from 

adding motion into the picture (e.g., the lower object chasing the upper one), or 

turning the objects to animated cartoons of animals, or people, who perform some 

complicated act, such as kissing. Finally, a useful (and natural in Phaeaco’s 

architecture) next step would be to form a pattern out of many sightings of kissing 

acts, so that what is stored in memory is not any particular such act, but kissing in 

general. It would also be useful to have an “image generator” available that, given 

the kissing pattern, generates an approximate “motion picture” of the event, using 

two generic characters as actors. The cognitive system could mentally inspect this 

approximation, for example, for drawing conclusions in further thoughts. 

But we are still in the visual world. Although the generic kissing pattern is not 

grounded in particular individuals, it is still possible for the image generator to 

create an approximation of the event, and even to dress it with arbitrary details. 

The final, decisive step in abstraction would be to match together a number of 

events in which an agent does something to another agent.93 This would leave us 

with a mere transitive verb in linguistic terms, and a sentence of the form “X acts 

on Y”. There would be no use for the image generator in this case (Figure 12.4). 

 
93  Notice that it is only a peculiarity of English that we are forced to use a specific preposition, 
such as “to”. Many other languages are more lenient, using a generic preposition, or none at all. 
The most abstract version of this thought does not need to include details such as tense, place, 
manner, etc. It is only some languages that force the speaker to be specific. 



12.1 On the primacy of vision 

 

337

                                          

 

Figure 12.4: A

The only specificity in

agents, and one is acting o

of abstracting the origina

abstract a relation such 

participating agents, thus 

line. An abstract K-point

number of agents. Some f

usually expressed as adje

off”) would be expressed 

that some languages (inclu

if only abstract “mentales

would correspond to Phae

Naturally, the above is

architectural tapestry of ad

the point that even the mo

cognition — namely, its 

primitives, and principles 

94  There are languages, such a
be described by a predicate (e.g

agent 

act 
agent 
      

 
bstraction for a transitive verb with two arguments 

 the representation of Figure 12.4 is that there are two 

n the other (the arrow has a direction). This was a result 

l visual relation, “touches”. Similarly, it is possible to 

as “meet”, which is symmetric with respect to the 

replacing the arrow in Figure 12.4 with an undirected 

-like relation (§7.4.2) would be one that involves any 

eatural nodes (such as “red”) would generalize to ideas 

ctives, whereas other featural nodes (such as “tapers 

by intransitive verbs. But note that this is a distinction 

ding the Indo-European family) force upon speakers;94 

e” is concerned, most adjectives and intransitive verbs 

aco’s featural nodes. 

 an oversimplified sketch of the extremely complicated 

ult human cognition. Nonetheless, it serves to illustrate 

st complex edifice built by nature and known to human 

own self — could be based on well-understood visual 

that build upon them. 

 
s Japanese, that use verbal forms to express what in English would 
., “is red”). 

2 1



338   Beyond Vision   

    

12.2 Does Phaeaco “understand” anything? 

As stated, the question in the title of this section is ill-posed. “To understand” is a 

concept that initially seems easy to grasp, but close examination reveals it to be 

less crisp than it first appears. To be able to give a thorough answer, after first 

agreeing on the meaning of the question, it is useful to review the misperception 

of “understanding” in John Searle’s Chinese Room thought experiment. 

12.2.1 In defense of half of Searle’s Chinese Room 
In 1980, Searle published a thought-provoking Gedankenexperiment, known ever 

since as “the Chinese Room experiment” (Searle, 1980). In it, he asked the reader 

to imagine Searle being locked in a room, from which scripts written in Chinese 

can be exchanged with the external world. Some of these scripts are called 

“stories”, and others “questions”, but Searle is unaware of that. All he has is 

Chinese symbols that mean nothing to him, plus a set of rules written in English, 

which of course he understands as a native speaker. The rules tell him how to 

combine the symbols together to produce new symbols, which he sends as output 

from the room. To the observers (native Chinese speakers), it appears as if there is 

a person in the room who understands Chinese just as well as they do. But in 

reality (says Searle) there is no one with an understanding of Chinese; it is only a 

“formal symbol manipulator” that achieves this. In contrast, if he were to be given 

questions in English, he would have no problem answering back in English, but 

this time he would have a full understanding of what he was being asked, so he 

would need no formal rules to explain to him how to manipulate the English 

symbols. In the case of English there is a mind at work; in the case of Chinese 

there is only a mindless automaton. 
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Searle proposed this thought experiment in support of a view that, by today’s 

standards and hindsight, makes a lot of sense. A few years earlier, some AI 

researchers, most notably Roger Schank and his colleagues at Yale, had produced 

programs they claimed could understand the script of a typical exchange between 

a customer and the staff in a restaurant (Schank and Abelson, 1977). For example, 

here is how Searle describes these programs: 

[S]uppose you are given the following story: “A man went into a 

restaurant and ordered a hamburger. When the hamburger arrived 

it was burned to a crisp, and the man stormed out of the restaurant 

angrily, without paying for the hamburger or leaving a tip.” Now, 

if you are asked “Did the man eat the hamburger?” you will 

presumably answer, “No, he did not.” Similarly, if you are given 

the following story: “A man went into a restaurant and ordered a 

hamburger; when the hamburger came he was very pleased with it; 

and as he left the restaurant he gave the waitress a large tip before 

paying his bill,” and you are asked the question, “Did the man eat 

the hamburger?” you will presumably answer, “Yes, he ate the 

hamburger.” Now Schank’s machines can similarly answer 

questions about restaurants in this fashion. 

Searle then went on to claim that such programs have no understanding of the 

situation whatsoever, and to support his claim he proposed the Chinese Room 

experiment. He said these programs are mere symbol manipulators: they receive 

symbols from the external world (a passage in English that describes the story), of 

which they have no understanding, because those symbols are not connected to 

anything material (e.g., real hamburgers), just like his Chinese symbols are 
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disconnected from the world; those symbols are manipulated by means of formal 

instructions (the program); and more symbols are outputted, still not understood. 

To a certain extent, Searle’s argument is valid. Early AI programs attempted 

to handle too much — much more than was justified by the simplistic theories and 

meager computing resources of the time. For example, a real hamburger is too 

complex an object to be represented by a “100% fat-free Lisp atom”95 such as 

“hamburger”. There is no meaning in a string of letters. Even if this string is 

connected to other strings, such as “bread bun”, “beef patty”, “tomato”, and so on, 

the whole thing is a pathetic caricature of a representation for a real hamburger, 

let alone customers, waitresses, tips, bills, restaurants, etc. 

12.2.2 But the other half of the room is empty 
Had Searle restricted his critique to Schank’s restaurant scripts, there would be 

little against which to argue. Unfortunately, Searle extended his argument to 

include any program: anything non-human that engages in information-processing 

activity. He rejected even neuronal functionalism (the neuron-for-neuron 

replacement by devices functionally identical to the neurons they are replacing). 

The only machinery he granted might actually engage in true thinking was a 

molecule-for-molecule replica of the human brain. In other words, if the machine 

is not made of “the right stuff ”, it cannot think. 

Searle’s argument has caused strong reactions, including excellent counter-

arguments and discussion (see Hofstadter and Dennett, 1981). It is unnecessary to 

repeat those arguments here. What is relevant is Searle’s conception of 

“understanding”. The following is his reaction to the suggestion that 

“understanding” might not be a two-valued predicate: 

 
95  Hofstadter’s expression. 
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In many […] discussions one finds a lot of fancy footwork about 

the word “understanding”. My critics point out that there are many 

different degrees of understanding; that “understanding” is not a 

simple two-place predicate; that there are even different kinds and 

levels of understanding […]; that in many cases it is a matter for 

decision and not a simple matter of fact whether x understands y; 

and so on. To all of these points I want to say: of course, of course. 

But in the rest of his article he shows that he does not accept even the tiniest 

bit of such variation in understanding unless the device is made out of the right 

stuff: “biological (i.e., chemical and physical) structure [which] is causally 

capable of producing perception, action, understanding, learning, and other 

intentional phenomena.” What phenomena are “intentional”? What is 

intentionality? 

Intentionality is by definition that feature of certain mental states 

by which they are directed at or about objects and states of affairs 

in the world. Thus, beliefs, desires, and intentions are intentional 

states; undirected forms of anxiety and depression are not. 

Given the above definition, one might think that Searle could allow a system 

like Phaeaco to have intentionality, because Phaeaco has mental states. And yet, 

no. Phaeaco is not made of the right stuff, and thus is not “causally capable” of 

producing perception, etc. 

This line of reasoning, which amounts to no more than a philosopher’s 

stubborn pontification of what is and is not allowed to be called “mental”, evokes 

little patience among most cognitive scientists. For it is unscientific to decide by 

decree what is and is not mental, or which type of system is allowed to possess 
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intentionality and which not. Such an attitude introduces an arbiter’s subjective 

bias, and it is a violation of scientific objectivity to accept an arbiter’s decision for 

answering questions. Scientifically valid answers must be empirical. But, more 

fundamentally, the questions themselves (whether some states are “mental”, 

whether a system is “intentional”, etc.) are unscientific pseudo-questions, since it 

is not possible to answer them in a clear-cut, yes/no manner: there is an entire 

spectrum of mentality, intentionality, intelligence, and consciousness, which 

ranges from the absolute zero of a stone, to the highest degree known to us, the 

adult human mind. An elucidation of this range in all aspects of cognition is 

attempted next. 

12.2.3 On the inadequacy of classical logic in cognition 
Traditions that have been around for thousands of years ought not be abandoned 

lightly, particularly if they have proved useful in our quest to understand and 

explain our environment. Such a tradition is Boolean logic, which, although it 

took its name from George Boole, a 19th century British mathematician, has its 

roots in Aristotle’s Prior Analytics (Aristotle, 1992)96, and was developed further 

by Augustus De Morgan, Gottlob Frege, Bertrand Russell, Kurt Gödel, and Alfred 

Tarski, to name only a few with landmark publications. Traditional Boolean logic 

has been enriched with variants that can handle possibility and necessity (modal 

logics), and others that deal with uncertain set membership and approximate 

reasoning (fuzzy logic). Nonetheless, the dominant mode of thinking among 

philosophers (and almost always among laypeople) is that of traditional Boolean 

logic. For example, an agent either has a mind or not; has intentionality or not; is 

 
96  Note, however, that the famous syllogism concluding “Socrates is mortal” is not found in this 
work. Aristotle used letters to denote abstract syllogisms; the famous one about Socrates is from 
Sextus Empiricus (2nd – 3rd C. AD), an Alexandrian and Athenian physician and philosopher. 
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conscious or unconscious; and so on. Those who study the philosophy of mind are 

often entrapped in this mode of reasoning, and allow no room for gray regions of 

uncertainty.97 To see that this framework of thought is unproductive, consider the 

example of trying to ascribe the concept of volition to various agents: 

• Is a person who suddenly feels a strong need for a cup of coffee, and is 

now preparing the coffee maker, etc., willing to have that coffee? Most 

people would answer, obviously yes. How else could it be? 

• Is a baby who cries, feeling hunger for milk, willing to have milk? 

Again most people would answer yes, unwilling to admit less volition 

to a member of our own species, although it is not hard to argue that an 

adult’s concept of hot coffee is much richer that a baby’s concept of 

milk. In Phaeaco’s terms, the conceptual representation of coffee, 

reached in the adult’s LTM, would be more complex than the baby’s 

representation of milk in an easily quantifiable way. 

• Is a pet dog scratching on the front door displaying volition? Does the 

dog want to go out for an afternoon walk? Pet lovers would answer 

with an emphatic “Yes!” But they would agree that their own concepts 

are more complex than those of their dog. People who are not pet 

lovers, after overcoming their bias in favor of our species, might agree 

that an adult dog’s concepts are more complex than those of a newborn 

human. 

• Does a goldfish that opens its mouth to swallow a chunk of food want 

to eat it? Here the notion starts becoming murky. What does a goldfish 

 
97  This is quite understandable, because one of the unifying themes of Western thought has been 
the urge towards absolute clarity and precision. Without this urge, almost certainly none of the so-
called “exact sciences” (astronomy, physics, chemistry, etc.) would exist. 
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know about “food”? Its tiny brain does not appear designed for 

entertaining such a concept, because it is not necessary for its survival: 

all the fish needs to do is react to a floating object of suitable size by 

opening its mouth. 

• Does an amoeba want to engulf a tiny piece of algae in the vacuole 

that it just created out of two pseudopodia? “Certainly not” is the first 

reaction that comes to mind. Amoebas do not have neurons with which 

to think; they are unicellular organisms. But the way an amoeba senses 

its environment with its pseudopodia, the way it stops in front of 

“food” and creates the vacuole exactly where it must be made to 

engulf the food, are all actions strongly reminiscent of volition. Does a 

living thing need neurons to act as if it has the rudiments of volition? 

• Consider also the hydras, jellyfish, corals, anemones, and other 

members of the phylum Cnidaria. These animals usually have neurons, 

but do not move around in search of their food. Food comes to them. 

• Does a molecule of benzene that just lost an atom of hydrogen want to 

replace it with another atom of hydrogen (or chlorine, etc.)? 

• Does a magnet want to stick on a refrigerator? 

Some of these suggestions might appear absurd. But in their entirety they 

serve to illustrate the range, and perhaps the origins, of the concept “volition”. 

What is more absurd is to attempt to draw a line beyond which volition (and 

hence, consciousness) does not exist. Would it be reasonable to draw this line 

between our species and anything else? Before there were Homo sapiens there 

were Homo erectus, and there was no “first” H. sapiens, only a smooth transition. 

Every attempt to define the first conscious individual is arbitrary, unscientific, and 

vacuous. The same is true of any attempt to define the first creature with mental 
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states, intentionality, and many other notions that are given center-stage roles in 

the philosophy of mind. 

If it is conceivable to see an Amoeba proteus as nothing more than a chemical 

(or biological) machine with the rudiments of volition, it is also conceivable to 

assign non-zero cognitive attributes to a computational machine, such as Phaeaco, 

which was designed to entertain representations. Phaeaco may not “want” to solve 

a BP as soon as it sees one any more than a spider “wants” to consume its prey, 

but it can look at the BP, construct representations of its contents, generalize them 

to visual patterns, activate concepts in its LTM, and “decide” to look again, and 

again if needed, at various parts of its input. How many animal species with 

sensing devices made of the “right stuff ” can be claimed to build representations 

of what they perceive? 

12.3 On the inner “I” and related issues 

The discussion in §12.2.3 leads to the conclusion that every complex notion in 

cognition, including consciousness and the sense of self, corresponds not to a 

simplistic two-valued traditional predicate, but either to a range of continuous 

values, or to a multidimensional space. Whichever is the case, every complex 

cognitive notion has evolutionary origins. This makes it possible for cognitive 

scientists to examine “simpler” versions, much like biologists who, in order to 

study the complex human eye, extend their investigation to include eyes in the 

entire evolutionary spectrum, starting from simple pigmented light-sensitive spots 

on single-celled animals (Dawkins, 1996, p. 85). If biologists benefit by studying 

in this way the eye, cognitive scientists might also benefit by similarly studying 

the “I”. 
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12.3.1 What it would take for Phaeaco to possess an “I” 
As it stands in its current implementation, Phaeaco has no “I”: in a range from 0 

to 1 (with the value 1 assigned to human cognition), Phaeaco would be assigned 

exactly 0. But the present chapter is not about how Phaeaco is, but about how it 

could improve and appear to be. What would it take to develop a sense of “I”? 

First note that the BP domain does not appear to be sufficiently conducive to 

developing such a sense. The domain includes objects (BP’s) that can be 

examined without reference to the agent solving them, or to other agents posing 

them. Even if such other agents were included (and a dialogue went on between 

solver and problem-poser), the relation between such agents and objects of the 

domain would be at best very tenuous and forced. 

A different domain that involves agents-with-an-“I” (conscious agents) 

participating actively and necessarily in the domain would be more helpful. 

Game-playing, particularly of the sort that involves an understanding of the 

opponent’s role and psychology (e.g., poker) might seem more fruitful than the 

BP-domain for this purpose. 

Assuming a suitable domain for experimentation is identified, Phaeaco should 

start with a single node representing “I”, devoid of any connections, which would 

be as useful a representation as the node for a single object that has made no 

connections yet; in other words, its utility would be nil. But each event that 

involved Phaeaco, either as the subject or the recipient of an action, would be 

recorded and linked to this self-node. Similar nodes for other agents should exist 

as well. Eventually an event-ful (“episodic”), very complex memory would 

develop around the self-node. The system should also possess a psychologically 

plausible sense of real time, because a large part of our sense of “who we are” is 

related to a correct chronological ordering of events in our memories. 
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There would be no single moment in this build-up of the self-node in which 

the system would suddenly become conscious. The degree of consciousness 

would be correlated with the complexity of the self-node, and the clarity with 

which it would be capable of observing itself, introspectively. 

In addition, philosophers would feel free to speculate on whether this future, 

imagined version of Phaeaco is conscious, but their opinions would be irrelevant 

because their minds are not made of the “right stuff ”. Only Phaeaco would be 

able to answer authoritatively this question. 

12.3.2 Can Phaeaco have subjective experiences (“qualia”)? 
“Subjective experiences” is another favorite topic in the philosophy of mind, but 

cognitive scientists generally consider it ill-defined. What is interesting in this 

case is that programs like Phaeaco make it possible to explore these questions 

from a different, “hands-on” perspective. Phaeaco appears to be replicating 

(roughly) the perception of an agent with subjective experiences (assuming we are 

willing to admit the sensibility of the notion): photons from the external world can 

hit a camera (corresponding to the lens of an eye), be directed to the computer’s 

screen (corresponding to the retina), and thereby analyzed by Phaeaco, building 

representations, and performing complex actions that can only be performed by 

people (e.g., coming up with the correct word that describes what exists in the 

world). So, could Phaeaco be said to have subjective experiences? 

Before attempting to answer this question, the notion of “subjective 

experience”, or “qualia”,98 must be clarified. It is not easy to define qualia, 

because they are a quintessentially subjective notion (definitions are usually 

understood to be objective), so it is easier to describe them by examples. When a 
 

98 Philosophers use the shorter term “qualia” (Latin for “qualities”; singular: “quale”) instead of 
“subjective experiences”, and this term will be adopted hereafter for brevity. 
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person experiences the redness of a rose, the smell of burnt rubber, the taste of 

licorice, the sound of a dog barking, the pain from having the skin punctured with 

a sharp object, the pain of losing a loved one, in every such case the person is 

having a mental state that can have both an objective and a subjective (“first-

person”) description. The subjective description, obtained introspectively, is the 

“quale”. 

Some philosophers claim that qualia are irreducible, non-physical entities that 

must be added to the ontology of physics, on a par with mass, energy, time, and 

space, in order to obtain a complete view of the world (Chalmers, 1996). Others 

think that qualia are first-person illusions: there is nothing in a subjective 

experience that cannot also be described objectively (Dennett, 1991, p. 372). 

The following thought experiment is sometimes presented as a decisive 

argument for the existence of qualia:99 

Mary suffers congenitally from complete achromatopsia, i.e., she 

can see no colors. She only sees shades of gray, as in black-and-

white photographs. She becomes a brilliant neuroscientist, and is 

capable of knowing all that there is to know about color vision. 

Technological advancements allow neuroscientists to examine the 

human brain as it experiences anything in complete detail, down to 

the last synapse, so Mary has 100% knowledge of what happens to 

the brain of a normal person while perceiving a colored scene. 

Mary likes to visit a colorful garden with flowers (which appear to 

her in shades of gray), examining her own brain. One day, progress 

in neuroscience makes it possible to correct whatever was 
 

99 Originally proposed by Frank Jackson (Jackson, 1982), but simplified here in some technical 
details. 
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damaged in Mary’s vision, and now she can experience colors. She 

goes to the same colorful garden, examines her brain, and notices a 

different pattern of neuronal activation. But, looking at the flowers 

directly, she exclaims: “So, that is what it is like to see colors!” 

This and similar thought experiments100 are used by proponents of the notion 

of “irreducible qualia” to claim that although Mary comes to know all there is to 

know about color perception, she still experiences something new when she sees 

the flowers in color for the first time (Tye, 1986). 

But Daniel Dennett has argued that if Mary is assumed to be “omniscient” 

regarding color vision, then her surprise upon seeing in colors is unjustified: she 

already knows how her brain will react, and she can even predict the feelings that 

the colored flowers will give to her, having seen the neural correlates of such 

feelings in brains of other people. The reader of this experiment, Dennett argues, 

is tricked into “not following directions” (Dennett, 1991, p. 399): 

The reason no one follows directions is because what they ask you 

to imagine is so preposterously immense, you can’t even try. The 

crucial premise is that “She has all the physical information.” That 

is not readily imaginable, so no one bothers. They just imagine that 

she knows lots and lots — perhaps they imagine that she knows 

everything that anyone knows today about the neurophysiology of 

color vision. But that’s just a drop in the bucket, and it’s not 

surprising that Mary would learn something if that were all she 

knew. 
 

100  In Jackson’s original formulation, Mary has normal vision but is raised as a captive in a room 
where everything is black-and-white, she is given books and a TV, there are no mirrors (or her 
skin is covered in gray paint), and is released one day by her captors into the colorful garden. 
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Possibly the essence of this contention can be better understood if we examine 

Mary’s representation of a colored object in her “direct” experience (after she is 

cured), and contrast it with her repres n of the “in t” experience. 

Figure 12.5: Represent

Figure 12.5 shows a simplificat

representation of the idea “I see a c

sighting should also be part of the figu

“I” 

see 

see 

“I” 

Figure 12.6: Representation of “I

In contrast, Figure 12.6 is a repr

that is created in my memory as a re

circle around the representation is 

modified in Phaeaco’s Workspace 

colored object, including the feelings
entatio

object
 
ation of “I see a colo

ion of what Pha

olored object”. T

re. 

 
 see my representatio

esentation of the

sult of seeing a c

supposed to be 

and LTM as a r

 associated with th
direc

color
re ct” 

e ould construct as a 

h lings caused by the 

n

 

o

e

d obje

aco c

e fee

object
color

 of a colored object” 

thought “I see everything 

lored object”. The dashed 

encompassing everything 

sult of experiencing the 

e experience, and possibly 



12.3 On the inner “I” and related issues 

 

351

even the “I see” part (not shown in the figure). The difference is that this time 

what is seen is not an object causing some feelings, but a representation of the 

object (plus the feelings and everything else). This is what Mary, the expert 

neuroscientist, would “see” by examining her internal states. 

The above, of course, is only a rough sketch, a caricature of what might occur 

in reality. But it helps to depict the difference between the two views. It is clear, 

for example, that there is a difference between the two views (all philosophers 

agree that there is a difference). It also shows that the first view does not miss any 

ethereal, non-physical qualia (there are no qualia); it is a representation that is not 

examined from the outside, from a third-person perspective. The second view is 

precisely a third-person perspective, but, agreeing with Dennett, it does not miss 

anything that exists in the first view; it is simply a different, somewhat detached 

perspective, and that is the source of the philosophical contention. 

12.4 Summary 

Vision, the most essential of all senses in primates, forms a fundamental platform 

upon which our higher cognitive abilities evolved. Such abilities include our sense 

of time, consciousness, self, and even our illusory first-person perspective of the 

world.  

12.5 A recapitulation of ideas introduced in this thesis 

In conclusion, the present work introduced, among others, the following notions: 

• Visual representations (chapter 7): a number of visual primitives can be 

combined in a principled way to build structures that represent the input. 
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• The use of statistics (chapter 8) for computing a psychological difference 

between instances of input, and for creating summary representations 

(“visual patterns”) of sufficiently similar input instances. 

• A novel algorithm for the formation of groups of representations (§8.3.2). 

• An LTM (chapter 9) comprising interconnected concepts, which are visual 

patterns that migrated into the LTM; and a practical indexing scheme 

(indispensable in serial computers) for accessing the LTM concepts. 

• An improvement over the notion of “concepts coming closer together”, as 

used in previous FARG architectures, that leads to more reliable long-term 

learning (§9.3.1). 

• A proposal for how time can be used for learning from positive only 

examples without resulting in overgeneralizations (§9.4.2), which implies 

that forgetting is not necessarily an undesirable property of cognition. 

• The separation of processing into two parts: a computationally intensive 

and cognitively inaccessible (“retinal”) level and a more abstract but 

accessible (“cognitive”) level, where “accessible” means “what the system 

could think and talk about” if it possessed some degree of consciousness 

and were equipped with language. 

• A vision of convergence between natural and programmed cognition 

(§4.3, Figure 4.9), acknowledging the fact that the two are based on 

hardware elements with radically different properties, but attaining “mind” 

as a common goal. 

It is hoped that these ideas, and others introduced in the present thesis, will be 

useful for future work in the automation of cognition. 



      

Appendix A: Bongard Problems 
The 200 BP’s mentioned in the main text are given below. The first 100 were 

designed by Bongard, the next 56 by Hofstadter, and the last 44 by the author. 

The results of the experiment described in §3.2 are given in a table next to each 

BP. The number of correct answers, average time, and standard deviation are 

shown. All times are in seconds. Also shown are: the number of incorrect 

answers, their average time, the number of wrong answers, their average time, and 

the total number of subjects (sample size). Wherever available, Phaeaco’s 

corresponding performance values are shown, from a sample of 100 runs. 

 
 BP #1  

Performance Human Phaeaco 
Correct 31 100 
Avg. time 6.9 7.0 
Std. dev. 5.1 0.4 
Incorrect 0 0 
Avg. time   
No answer 0 0 
Avg. time   
Sample size 31 100  

 Empty picture Not empty picture  

BP #2  
Performance Human Phaeaco 
Correct 28 82 
Avg. time 13.6 11.2 
Std. dev. 9.6 2.5 
Incorrect 0 18 
Avg. time  13.4 
No answer 0 0 
Avg. time   
Sample size 28 100  

 Large figures Small figures  

 353   
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BP #3  

Performance: Human Phaeaco 
Correct 28 99 
Avg. time 7.9 4.3 
Std. dev. 6.1 0.2 
Incorrect 0 1 
Avg. time  8.0 
No answer 0 0 
Avg. time   
Sample size 28 100  

 Outlined figures Filled figures  

BP #4  
Performance: Human Phaeaco 
Correct 5 20 
Avg. time 17.6 8.5 
Std. dev. 10.9 0.3 
Incorrect 9 3 
Avg. time 30.4 9.3 
No answer 17 77 
Avg. time 37.8 23.8 
Sample size 31 100  

 Convex figures Concave figures  

BP #5  
Performance: Human Phaeaco 
Correct 28 60 
Avg. time 11.0 8.9 
Std. dev. 9.1 2.8 
Incorrect 2 18 
Avg. time 5.0 16.6 
No answer 1 22 
Avg. time 16.0 21.5 
Sample size 31 100  

 Polygons Curvilinear figures  
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BP #6  

Performance: Human Phaeaco 
Correct 26 70 
Avg. time 18.8 4.4 
Std. dev. 16.3 3.8 
Incorrect 2 11 
Avg. time 26.5 12.5 
No answer 3 19 
Avg. time 27.7 14.6 
Sample size 31 100  

 Triangles Quadrilaterals  

BP #7  
Performance: Human Phaeaco 
Correct 27  
Avg. time 11.5  
Std. dev. 12.3  
Incorrect 0  
Avg. time   
No answer 3  
Avg. time 25.7  
Sample size 30   

 Elongated vertically Elongated horizontally  

BP #8  
Performance: Human Phaeaco 
Correct 24 23 
Avg. time 21.0 8.2 
Std. dev. 20.9 0.5 
Incorrect 0 4 
Avg. time  15.4 
No answer 7 73 
Avg. time 23.0 18.2 
Sample size 31 100  

 On the right side On the left side  
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BP #9  

Performance: Human Phaeaco 
Correct 31  
Avg. time 10.5  
Std. dev. 7.3  
Incorrect 0  
Avg. time   
No answer 0  
Avg. time   
Sample size 31   

 Smooth contours Wiggly contours  

BP #10  
Performance: Human Phaeaco 
Correct 27  
Avg. time 12.2  
Std. dev. 9.7  
Incorrect 2  
Avg. time 27.0  
No answer 2  
Avg. time 26.5  
Sample size 31   

 Triangles Quadrilaterals  

 

BP #11  
Performance: Human Phaeaco 
Correct 15 83 
Avg. time 23.7 16.3 
Std. dev. 13.7 6.4 
Incorrect 6 4 
Avg. time 38.0 21.3 
No answer 10 13 
Avg. time 30.6 23.7 
Sample size 31 100  

 Elongated figures Not elongated figures  
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BP #12  

Performance: Human Phaeaco 
Correct 7  
Avg. time 33.1  
Std. dev. 14.4  
Incorrect 2  
Avg. time 21.5  
No answer 21  
Avg. time 30.5  
Sample size 30   

Elongated convex hull Not elongated convex 
hull 

 

BP #13  
Performance: Human Phaeaco 
Correct 19  
Avg. time 15.5  
Std. dev. 7.0  
Incorrect 2  
Avg. time 9.5  
No answer 2  
Avg. time 14.0  
Sample size 23   

Vertical rectangles or  Horizontal rectangles 
horizontal ellipses or vertical ellipses 

 

BP #14  
Performance: Human Phaeaco 
Correct 24  
Avg. time 15.0  
Std. dev. 12.3  
Incorrect 0  
Avg. time   
No answer 1  
Avg. time 1.0  
Sample size 25   

 Large total line length Small total line length  
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BP #15  

Performance: Human Phaeaco 
Correct 27 99 
Avg. time 7.7 7.6 
Std. dev. 3.6 0.3 
Incorrect 1 0 
Avg. time 7.0  
No answer 3 1 
Avg. time 30.3 22.8 
Sample size 31 100  

 Closed regions Open regions  

BP #16  
Performance: Human Phaeaco 
Correct 9  
Avg. time 29.4  
Std. dev. 20.2  
Incorrect 5  
Avg. time 27.4  
No answer 10  
Avg. time 21.6  
Sample size 24   

 Counterclockwise spiral Clockwise spiral  

BP #17  
Performance: Human Phaeaco 
Correct 6  
Avg. time 35.5  
Std. dev. 23.0  
Incorrect 3  
Avg. time 15.7  
No answer 14  
Avg. time 12.9  
Sample size 23   

 Angle directed inward No inward angle  
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BP #18  
Performance: Human Phaeaco 
Correct 8  
Avg. time 16.1  
Std. dev. 6.5  
Incorrect 2  
Avg. time 27.0  
No answer 13  
Avg. time 13.2  
Sample size 23   

 Neck No neck  

 

BP #19  
Performance: Human Phaeaco 
Correct 10  
Avg. time 18.7  
Std. dev. 10.7  
Incorrect 0  
Avg. time   
No answer 12  
Avg. time 12.1  
Sample size 22   

 Horizontal neck Vertical neck  

BP #20  
Performance: Human Phaeaco 
Correct 5  
Avg. time 21.4  
Std. dev. 6.2  
Incorrect 2  
Avg. time 26.0  
No answer 15  
Avg. time 16.3  
Sample size 22   

 Dots on same side of neck Dots on different sides  
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BP #21  

Performance: Human Phaeaco 
Correct 20 34 
Avg. time 25.1 16.6 
Std. dev. 16.3 3.4 
Incorrect 9 20 
Avg. time 31.4 43.4 
No answer 2 46 
Avg. time 42.5 40.1 
Sample size 31 100  

 Small figure present No small figure present  

BP #22  
Performance: Human Phaeaco 
Correct 11 13 
Avg. time 23.9 28.4 
Std. dev. 20.2 7.2 
Incorrect 3 6 
Avg. time 42.0 24.0 
No answer 16 81 
Avg. time 35.0 23.3 
Sample size 30 100  

 Areas approximately equal Areas differ greatly  

BP #23  
Performance: Human Phaeaco 
Correct 30 83 
Avg. time 9.4 8.5 
Std. dev. 5.4 2.5 
Incorrect 1 4 
Avg. time 20.0 19.5 
No answer 0 13 
Avg. time  22.5 
Sample size 31 100  

 One figure Two figures  
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BP #24  

Performance: Human Phaeaco 
Correct 20  
Avg. time 21.0  
Std. dev. 12.2  
Incorrect 3  
Avg. time 20.0  
No answer 7  
Avg. time 31.7  
Sample size 30   

 Circle present No circle  

BP #25  
Performance: Human Phaeaco 
Correct 22  
Avg. time 9.7  
Std. dev. 6.9  
Incorrect 0  
Avg. time   
No answer 4  
Avg. time 5.3  
Sample size 26   

 Filled figure is triangle Filled figure is circle  

BP #26  
Performance: Human Phaeaco 
Correct 15  
Avg. time 15.7  
Std. dev. 10.1  
Incorrect 4  
Avg. time 17.0  
No answer 5  
Avg. time 13.6  
Sample size 24   

 Filled triangle exists No filled triangle  
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Avg. time   
Std. dev.   
Incorrect 0  
Avg. time   
No answer 21  
Avg. time 20.5  
Sample size 21   

More filled circles than More outlined circles 
outlined circles than filled circles 

 

BP #29  
Performance: Human Phaeaco 
Correct 3  
Avg. time 23.7  
Std. dev. 4.1  
Incorrect 11  
Avg. time 24.5  
No answer 11  
Avg. time 29.3  
Sample size 25   

More circles inside than Fewer circles inside 
outside than outside 

 

BP #27  
Performance: Human Phaeaco 
Correct 8  
Avg. time 18.1  
Std. dev. 16.0  
Incorrect 4  
Avg. time 50.75  
No answer 10  
Avg. time 15.8  
Sample size 22   

 More filled figures More outlined figures  

BP #28  
Performance: Human Phaeaco 
Correct 0  
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BP #30  
Performance: Human Phaeaco 
Correct 7  
Avg. time 19.4  
Std. dev. 9.9  
Incorrect 6  
Avg. time 23.8  
No answer 12  
Avg. time 16.3  
Sample size 25   

 Self-crossing line No self-crossing line  

 

BP #31  
Performance: Human Phaeaco 
Correct 18  
Avg. time 17.9  
Std. dev. 9.4  
Incorrect 1  
Avg. time 26.0  
No answer 5  
Avg. time 17.6  
Sample size 24   

 One line Two lines  

BP #32  
Performance: Human Phaeaco 
Correct 6  
Avg. time 14.7  
Std. dev. 6.2  
Incorrect 1  
Avg. time 9.0  
No answer 17  
Avg. time 27.2  
Sample size 24   

 Sharp projection No sharp projection  
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BP #33  
Performance: Human Phaeaco 
Correct 5  
Avg. time 48.6  
Std. dev. 28.4  
Incorrect 3  
Avg. time 19.7  
No answer 22  
Avg. time 37.4  
Sample size 30   

 Acute angle No acute angle  

 

BP #34  
Performance: Human Phaeaco 
Correct 30  
Avg. time 9.1  
Std. dev. 5.6  
Incorrect 1  
Avg. time 19.0  
No answer 0  
Avg. time   
Sample size 31   

 Large hole Small hole  

BP #35  
Performance: Human Phaeaco 
Correct 11  
Avg. time 28.2  
Std. dev. 17.7  
Incorrect 1  
Avg. time 21.0  
No answer 14  
Avg. time 19.0  
Sample size 26   

Hole parallel to figure Hole perpendicular to 
axis figure axis 
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BP #36  

Performance: Human Phaeaco 
Correct 23  
Avg. time 20.1  
Std. dev. 14.6  
Incorrect 2  
Avg. time 69  
No answer 5  
Avg. time 23.6  
Sample size 30   

 Triangle above circle Circle above triangle  

BP #37  
Performance: Human Phaeaco 
Correct 3  
Avg. time 42.0  
Std. dev. 24.5  
Incorrect 5  
Avg. time 27.2  
No answer 17  
Avg. time 28.5  
Sample size 25   

 Triangle above circle Circle above triangle  

BP #38  
Performance: Human Phaeaco 
Correct 24  
Avg. time 19.8  
Std. dev. 11.0  
Incorrect 2  
Avg. time 19.0  
No answer 4  
Avg. time 16.3  
Sample size 30   

 Triangle larger than circle Circle larger than  
  triangle 
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BP #39  

Performance: Human Phaeaco 
Correct 30 65 
Avg. time 12.4 4.2 
Std. dev. 10.0 0.5 
Incorrect 0 29 
Avg. time  3.1 
No answer 1 6 
Avg. time 5.0 5.4 
Sample size 31 100  

 All lines almost parallel Not all lines parallel  

BP #40  
Performance: Human Phaeaco 
Correct 15  
Avg. time 29.1  
Std. dev. 12.1  
Incorrect 11  
Avg. time 25.5  
No answer 4  
Avg. time 29.0  
Sample size 30   

 Three collinear points No collinear points  

BP #41  
Performance: Human Phaeaco 
Correct 14  
Avg. time 26.0  
Std. dev. 11.0  
Incorrect 1  
Avg. time 15.0  
No answer 11  
Avg. time 12.7  
Sample size 26   

 White points are collinear   
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BP #42  

Performance: Human Phaeaco 
Correct 15  
Avg. time 13.1  
Std. dev. 5.8  
Incorrect 1  
Avg. time 44.0  
No answer 7  
Avg. time 17.4  
Sample size 23   

 Inside points collinear   

BP #43  
Performance: Human Phaeaco 
Correct 14  
Avg. time 14.0  
Std. dev. 11.1  
Incorrect 3  
Avg. time 16.7  
No answer 5  
Avg. time 19.8  
Sample size 22   

Amplitude increases from Amplitude decreases 
left to right from left to right 

 

BP #44  
Performance: Human Phaeaco 
Correct 6  
Avg. time 14.0  
Std. dev. 10.1  
Incorrect 2  
Avg. time 16.5  
No answer 13  
Avg. time 19.9  
Sample size 21   

 Circles on different curves Circles on same curve  
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BP #45  

Performance: Human Phaeaco 
Correct 29  
Avg. time 15.0  
Std. dev. 12.9  
Incorrect 0  
Avg. time   
No answer 2  
Avg. time 42.5  
Sample size 31   

 Outlined on top Solid on top  

BP #46  
Performance: Human Phaeaco 
Correct 15  
Avg. time 17.7  
Std. dev. 11.0  
Incorrect 3  
Avg. time 45.0  
No answer 8  
Avg. time 16.5  
Sample size 26   

 Triangle on top Circle on top  

 

BP #47  
Performance: Human Phaeaco 
Correct 31  
Avg. time 11.0  
Std. dev. 4.1  
Incorrect 0  
Avg. time   
No answer 0  
Avg. time   
Sample size 31   

 Triangle inside circle Circle inside triangle  

 

 



Appendix A: Bongard Problems 369

 
BP #48  

Performance: Human Phaeaco 
Correct 26  
Avg. time 21.8  
Std. dev. 16.2  
Incorrect 1  
Avg. time 63  
No answer 3  
Avg. time 33.7  
Sample size 30   

Filled objects above Outlined objects above 
outlined ones filled ones 

 

BP #49  
Performance: Human Phaeaco 
Correct 23  
Avg. time 19.3  
Std. dev. 8.4  
Incorrect 0  
Avg. time   
No answer 4  
Avg. time 7.0  
Sample size 27   

 Inside points close together Inside points far apart  

BP #50  
Performance: Human Phaeaco 
Correct 7  
Avg. time 22.7  
Std. dev. 6.7  
Incorrect 5  
Avg. time 21.4  
No answer 16  
Avg. time 30.5  
Sample size 28   

 At least one axis of   
 symmetry  
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BP #51  

Performance: Human Phaeaco 
Correct 19  
Avg. time 32.1  
Std. dev. 21.8  
Incorrect 2  
Avg. time 28.5  
No answer 9  
Avg. time 34.3  
Sample size 30   

At least two circles close to No two circles close to 
each other each other 

 

BP #52  
Performance: Human Phaeaco 
Correct 16  
Avg. time 20.6  
Std. dev. 16.1  
Incorrect 0  
Avg. time   
No answer 6  
Avg. time 15.7  
Sample size 22   

 Arrows disagree Arrows agree  

BP #53  
Performance: Human Phaeaco 
Correct 7  
Avg. time 29.3  
Std. dev. 10.9  
Incorrect 5  
Avg. time 41.0  
No answer 14  
Avg. time 33.3  
Sample size 26   

Inside polygon has fewer Inside polygon has 
sides than outside more sides than outside 
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BP #54  

Performance: Human Phaeaco 
Correct 1  
Avg. time 38.0  
Std. dev.   
Incorrect 2  
Avg. time 9.0  
No answer 17  
Avg. time 16.6  
Sample size 20   

Counterclockwise: triangle, Clockwise: triangle, 
circle, cross circle, cross 

 

BP #55  
Performance: Human Phaeaco 
Correct 6  
Avg. time 25.0  
Std. dev. 10.1  
Incorrect 2  
Avg. time 40.0  
No answer 10  
Avg. time 13.4  
Sample size 18   

 Circle left of cavity Circle right of cavity  

BP #56  
Performance: Human Phaeaco 
Correct 22 19 
Avg. time 14.0 30.4 
Std. dev. 13.1 7.2 
Incorrect 4 17 
Avg. time 25.3 20.1 
No answer 5 64 
Avg. time 25.8 34.9 
Sample size 31 100  

 All objects have the   
 same texture 
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BP #57  

Performance: Human Phaeaco 
Correct 14  
Avg. time 16.1  
Std. dev. 9.5  
Incorrect 13  
Avg. time 16.2  
No answer 2  
Avg. time 5.5  
Sample size 29   

 Identical figures   

BP #58  
Performance: Human Phaeaco 
Correct 4  
Avg. time 10.0  
Std. dev. 1.4  
Incorrect 2  
Avg. time 22.0  
No answer 10  
Avg. time 16.6  
Sample size 16   

 Two identical filled   
 squares  

 

BP #59  
Performance: Human Phaeaco 

13.3  
Std. dev. 6.4  
Incorrect 0  
Avg. time   
No answer 3  
Avg. time 7.3  
Sample size 18   

 Similar objects   

Correct 15  
Avg. time 
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BP #60  

Performance: Human Phaeaco 
Correct 5  
Avg. time 26.0  
Std. dev. 15.3  
Incorrect 2  
Avg. time 21.0  
No answer 9  
Avg. time 10.9  
Sample size 16   

 Some similar figures No similar figures  

BP #61  
Performance: Human Phaeaco 
Correct 25  
Avg. time 14.7  
Std. dev. 7.7  
Incorrect 0  
Avg. time   
No answer 5  
Avg. time 29.2  
Sample size 30   

 Equal number of crosses on   
 the two sides of the line 

 

BP #62  
Performance: Human Phaeaco 
Correct 8  
Avg. time 34.0  
Std. dev. 16.0  
Incorrect 2  
Avg. time 15.5  
No answer 18  
Avg. time 29.3  
Sample size 28   

 Ends of curve are far Ends of curve are close
 apart together 
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BP #63  

Performance: Human Phaeaco 
Correct 15  
Avg. time 9.5  
Std. dev. 4.2  
Incorrect 0  
Avg. time   
No answer 1  
Avg. time 19.0  
Sample size 16   

Object shaded on the Object shaded on the 
right side left side 

 

 

BP #64  
Performance: Human Phaeaco 
Correct 1  

19.0  
Std. dev.   
Incorrect 2  
Avg. time 30.5  
No answer 12  
Avg. time 11.75  
Sample size 15   

 Ellipse point to the cross Ellipse points to the  
  circle 

 

 

BP #65  
Performance: Human Phaeaco 
Correct 15  

20.5  
Std. dev. 8  
Incorrect 2  
Avg. time 72.0  
No answer 13  
Avg. time 43.3 

30  

 Horizontal triangle group Vertical triangle group  

Avg. time 

Avg. time 

 
Sample size  
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BP #66  

Performance: Human Phaeaco 
Correct 21  
Avg. time 17.5  
Std. dev. 10.1  
Incorrect 0  
Avg. time   
No answer 8  
Avg. time 13.8  
Sample size 29   

 Loose circles horizontal Loose circles vertical  

BP #67  
Performance: Human Phaeaco 
Correct 9  
Avg. time 34.3  
Std. dev. 16.3  
Incorrect 7  
Avg. time 37.9  
No answer 13  
Avg. time 21.3  
Sample size 29   

Right branch begins higher Right branch begins 
than left branch lower than left branch 

 

BP #68  
Performance: Human 

 
  

Std. dev.   
Incorrect 3  
Avg. time 17.0  
No answer 11  
Avg. time 15.7  
Sample size 14   

Right branch ends higher Right branch ends  
than left branch lower than left branch 

 

Phaeaco 
Correct 0 
Avg. time 
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BP #69  

Performance: Human Phaeaco 
Correct 15  
Avg. time 10.5  
Std. dev. 5.3  
Incorrect 0  
Avg. time   
No answer 1  
Avg. time 18.0  
Sample size 16   

 Dot on tip of trunk Dot on tip of branch  

BP #70  
Performance: Human Phaeaco 
Correct 19  
Avg. time 28.4  
Std. dev. 17.9  
Incorrect 3  
Avg. time 21.3  
No answer 7  
Avg. time 29.9  
Sample size 29   

 One level of branching Two levels of  
  branching 

 

BP #71  
Performance: Human Phaeaco 
Correct 15  
Avg. time 34.6  
Std. dev. 14.3  
Incorrect 6  
Avg. time 42.2  
No answer 9  
Avg. time 41.8  
Sample size 30   

 Two levels of inside-ness One level of  
  inside-ness 
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BP #72  

Performance: Human Phaeaco 
Correct 4  
Avg. time 39.5  
Std. dev. 19.8  
Incorrect 3  
Avg. time 57.0  
No answer 23  
Avg. time 30.2  
Sample size 30   

 Curve ends are parallel Curve ends are 
  perpendicular 

 

BP #73  
Performance: Human Phaeaco 
Correct 0  
Avg. time   
Std. dev.   
Incorrect 1  
Avg. time 8.0  
No answer 14  
Avg. time 15.2  
Sample size 15   

Rectangle perpendicular to Rectangle parallel to 
ellipse ellipse 

 

BP #74  
Performance: Human Phaeaco 
Correct 11  
Avg. time 12.2  
Std. dev. 5.0  
Incorrect 3  
Avg. time 10.7  
No answer 1  
Avg. time 2.0  
Sample size 15   

 Tail at the rounded end Tail at the pointy end  

 

 



  Appendix A: Bongard Problems 378

 
BP #75  

Performance: Human Phaeaco 
Correct 26  
Avg. time 16.6  
Std. dev. 9.2  
Incorrect 0  
Avg. time   
No answer 4  
Avg. time 32.25  
Sample size 30   

Triangle on the concave Triangle on the convex 
side of the arc side of the arc 

 

BP #76  
Phaeaco Performance: Human 

Correct 9  
11.4  

Std. dev. 5.2  
Incorrect 1  
Avg. time 17.0  
No answer 4  
Avg. time 7.3  
Sample size 14   

 Long sides concave Long sides convex  

BP #77  
Performance: Human Phaeaco 
Correct 18  
Avg. time 29.6  
Std. dev. 22.0  
Incorrect 3  
Avg. time 24.3  
No answer 9  
Avg. time 31.2  
Sample size 30   

 Two equal angles   

Avg. time 
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BP #78  

Performance: Human Phaeaco 
Correct 8  
Avg. time 32.4  
Std. dev. 14.5  
Incorrect 0  
Avg. time   
No answer 22  
Avg. time 29.0  
Sample size 30   

 Lines meet at imaginary   
 point  

 

BP #79  
Performance: Human Phaeaco 
Correct 1  
Avg. time 26.0  
Std. dev.   
Incorrect 0  
Avg. time   
No answer 15  
Avg. time 11.6  
Sample size 16   

Filled circle closer to Filled circle closer to 
outlined circle triangle 

 

BP #80  
Performance: Human Phaeaco 
Correct 1  
Avg. time 26.0  
Std. dev.   
Incorrect 0  
Avg. time   
No answer 14  
Avg. time 11.5  
Sample size 15   

 Dots equidistant from   
 cross 
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BP #81  

Performance: Human Phaeaco 
Correct 13  
Avg. time 13.7  
Std. dev. 6.2  
Incorrect 6  
Avg. time 29.0  
No answer 12  
Avg. time 55.0  
Sample size 31   

 Filled and outlined groups Filled and outlined 
 are separate groups overlap 

 

BP #82  
Performance: Human Phaeaco 
Correct 0  
Avg. time   
Std. dev.   
Incorrect 1  
Avg. time 66.0  
No answer 29  
Avg. time 34.9  
Sample size 30   

 Convex hull of crosses is   
 equilateral triangle 

 

BP #83  
Performance: Human Phaeaco 
Correct 22  
Avg. time 23.6  
Std. dev. 11.4  
Incorrect 2  
Avg. time 16.0  
No answer 6  
Avg. time 19.5  
Sample size 30   

 Circle in convex hull of   
 crosses 
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BP #84  

Performance: Human Phaeaco 
Correct 31  
Avg. time 12.6  
Std. dev. 7.6  
Incorrect 0  
Avg. time   
No answer 0  
Avg. time   
Sample size 31   

Square out of region made Square in region made 
by circles by circles 

 

BP #85  
Performance: Human Phaeaco 
Correct 27 94 
Avg. time 20.5 11.5 
Std. dev. 8.1 4.3 
Incorrect 2 0 
Avg. time 34.5  
No answer 1 6 
Avg. time 2.0 13.1 
Sample size 30 100  

 Three lines Five lines  

 

BP #86  
Performance: Human Phaeaco 
Correct 8  
Avg. time 45.3  
Std. dev. 25.6  
Incorrect 8  
Avg. time 43.6  
No answer 15  
Avg. time 26.7  
Sample size 31   

 Three line strings meeting Five line strings 
 at a K-point meeting at a K-point 
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BP #87  

Performance: Human Phaeaco 
Correct 16  
Avg. time 33.4  
Std. dev. 16.9  
Incorrect 2  
Avg. time 40.0  
No answer 12  
Avg. time 29.8  
Sample size 30   

 Four line segments Five line segments  

BP #88  
Performance: Human Phaeaco 
Correct 16  
Avg. time 21.6  
Std. dev. 16.0  
Incorrect 0  
Avg. time   
No answer 14  
Avg. time 17.6  
Sample size 30   

 Three ovals Five ovals  

BP #89  
Performance: Human Phaeaco 
Correct 6  
Avg. time 35.7  
Std. dev. 24.2  
Incorrect 5  
Avg. time 62.0  
No answer 19  
Avg. time 30.8  
Sample size 30   

 Three groups of ovals Five groups of ovals  
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BP #90  

Performance: Human Phaeaco 
Correct 2  
Avg. time 36.0  
Std. dev. 19.8  
Incorrect 0  
Avg. time   
No answer 12  
Avg. time 17.7  
Sample size 14   

Three groups of outlined Four groups of outlined 
ovals ovals 

 

 

BP #91  
Performance: Human Phaeaco 
Correct 18  
Avg. time 32.0  
Std. dev. 15.4  
Incorrect 0  
Avg. time   
No answer 12  
Avg. time 22.8  
Sample size 30   

 Three Four  

 

BP #92  
Performance: Human Phaeaco 
Correct 6  
Avg. time 21.0  
Std. dev. 12.6  
Incorrect 0  
Avg. time   
No answer 9  
Avg. time 11.1  
Sample size 15   

 One curve More than one curve  
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BP #93  
Performance: Human Phaeaco 
Correct 3  
Avg. time 27.7  
Std. dev. 2.5  
Incorrect 0  
Avg. time   
No answer 17  
Avg. time 15.4  
Sample size 20   

Outlined circle at cross Filled circle at cross 
point point 

 

BP #94  
Performance: Human Phaeaco 
Correct 15  
Avg. time 7.5  
Std. dev. 3.8  
Incorrect 0  
Avg. time   
No answer 0  
Avg. time   
Sample size 15   

 Filled circle not at Filled circle at  
 endpoint endpoint 

 

 

BP #95  
Performance: Human Phaeaco 
Correct 30  
Avg. time 8.4  
Std. dev. 5.1  
Incorrect 0  
Avg. time   
No answer 1  
Avg. time 17.0  
Sample size 31   

 Texture made of vertical Texture made of 
 lines horizontal lines 
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BP #96  
Performance: Human Phaeaco 
Correct 25  
Avg. time 16.9  
Std. dev. 13.3  
Incorrect 0  
Avg. time   
No answer 5  
Avg. time 16.0  
Sample size 30   

 Triangle Quadrilateral  

BP #97  
Performance: Human Phaeaco 
Correct 29  
Avg. time 8.7  
Std. dev. 5.6  
Incorrect 0  
Avg. time   
No answer 2  
Avg. time 18.0  
Sample size 31  

 Triangle Circle  

BP #98  
Performance: Human Phaeaco 
Correct 9  
Avg. time 12.1  
Std. dev. 8.7  
Incorrect 3  
Avg. time 13.7  
No answer 4  
Avg. time 19.3  
Sample size 16   

 Triangle Quadrilateral  
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BP #99  
Performance: Human Phaeaco 
Correct 9  
Avg. time 19.8  
Std. dev. 9.5  
Incorrect 1  
Avg. time 19.0  
No answer 6  
Avg. time 8.3  
Sample size 16   

 Curves made of circles   
 and triangles intersect 

 

BP #100  
Performance: Human Phaeaco 
Correct 14  
Avg. time 5.4  
Std. dev. 3.3  
Incorrect 0  
Avg. time   
No answer 0  
Avg. time   
Sample size 14   

 Letter “A”  Letter “Б”  

 

BP #101  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Parallel dents Perpendicular dents  
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BP #102  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

Internal arrows point Internal arrows point 
outward inward 

 

BP #103  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Isosceles triangle Scalene triangle  

BP #104  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 One circle passes through the    
 center of the other circle 
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BP #105  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Ends of line point to same Ends of line point to 
 direction opposite directions 

 

BP #106  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Negative slope Positive slope  

BP #107  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

Three simple lines Three non-simple lines
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BP #108  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Petals taper off Petals thicken  

BP #109  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

Circle on the right of the Circle on the left of the 
box box 

 

BP #110  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Four circles   
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BP #111  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Middle shape is triangle   

BP #112  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

Dots equidistant along Dots equidistant along 
x-axis y-axis 

 

BP #113  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 T-like point Y-like point  
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BP #114  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Four X-points Two X-points  

BP #115  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   

  
No answer   
Avg. time   
Sample size    

 Most deeply nested shape    
 is reachable from outside 

 

BP #116  
Human Phaeaco Performance: 

Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Polygon stands on Polygon stands on 
 side vertex 

 

Avg. time 
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BP #117  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Triangle points to center    
 of circle 

 

BP #118  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 No cycle There is a cycle  

BP #119  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Almost a circle   
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BP #120  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   

Avg. time   
No answer   
Avg. time   
Sample size    

 All turns are in one direction   

BP #121  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size   

 Circle: VV; square: VΛ; Circle: ΛΛ; square: ΛV; 
 triangle: ΛΛ; blank: ΛV triangle: VV; blank: VΛ 

 

BP #122  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Line joins two different    
 points of closed region 

 

 

Incorrect   
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BP #123  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Similar shapes Dissimilar shapes  

BP #124  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Similar textures Dissimilar textures  

BP #125  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev. 

Avg. time   
No answer   
Avg. time   
Sample size    

 One protrusion and one    
 indentation of the same shape 

 

  
Incorrect   
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BP #126  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 One large and one small   
 object 

 

BP #127  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   

  
Sample size    

 Exactly one circle   

BP #128  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Same objects inside and   
 outside larger shape 

 

Avg. time 
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BP #129  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Indentation on Indentation on  
 protrusion indentation 

 

BP #130  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

Larger closed region is Larger closed region is 
made of curves made of line segments 

 

BP #131  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Dots make up parallelogram   
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BP #132  

Performance: Human Phaeaco 
Correct   

  

Avg. time   
No answer   
Avg. time   
Sample size    

Dots make triangle with Dots make triangle 
base down with vertex down 

 

BP #133  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   

 
Avg. time   
No answer   

  
Sample size    

 Dots collinear with center    
 of circle 

 

BP #134  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Circle centers collinear   

Avg. time 
Std. dev.   
Incorrect   

Incorrect  

Avg. time 
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BP #135  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Circles on same side of Circles on different 
 curve sides of curve 

 

BP #136  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Concave shape Convex shape  

BP #137  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Dots equal to the sides that    
 make up the closed region 
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BP #138  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 No dot in convex hull At least one dot in  
  convex hull 

 

BP #139  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   

   

 Similar components that    
 change regularly 

 

BP #140  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 One large shape and two    
 smaller identical ones 

 

Sample size 
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BP #141  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Two groups of three    
 and two 

 

BP #142  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Three and two, the two    
 are always together 

 

BP #143  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.  

 
Avg. time   
No answer   
Avg. time   
Sample size    

 Three and two Four and one  

 
Incorrect  
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BP #144  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Three and two, but Three and two,  
 sharing a property but separable 

 

BP #145  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Four and one, the four Four and one, the four
 make a regular group are three and one 

 

BP #146  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 A square enclosed in A square enclosed in 
 a circle, and triangles a triangle, and circles 
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BP #147  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Three and two, the two Three and two, the two
 are vertical are horizontal 

 

BP #148  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 A little less than a A little more than a 
 regular shape regular shape 

 

BP #149  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Lone square Lone circle  
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BP #150  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Odd num. of squares Even num. of squares  

BP #151  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 If the circle closest to the cross is removed,  
 the other three form an equilateral triangle 

 

BP #152  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Not vertically symmetric Vertically symmetric  
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BP #153  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Hook-like ending Square-bracket-like 
  ending 

 

BP #154  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Wedged ending Round ending  

BP #155  
Performance: Human Phaeaco 

 
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Curvaceous Angular  

Correct  
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BP #156  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Three groups Two groups  

BP #157  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 White background Black background  

BP #158  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Some slope Another slope  
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BP #159  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Rectangle Triangle  

BP #160  
Performance: Human Phaeaco 
Correct 26  
Avg. time 23.2  
Std. dev. 23.9  
Incorrect 1  
Avg. time 65.0  
No answer 1  
Avg. time 122.0  
Sample size 28   

 Rectangle which is Typical rectangle 
 nearly a triangle 

 

BP #161  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Midpoints are collinear   
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BP #162  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Every other side passes    
 through the same point 

 

BP #163  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Line connecting small objects    
 does not intersect larger object 

 

BP #164  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Number of objects is one Number of objects is 
 less than sides one more than sides 
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BP #165  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Line perpendicular to one Line parallel to one 
 side of the object side of the object 

 

BP #166  
Performance: Human Phaeaco 
Correct 24  
Avg. time 13.8  
Std. dev. 6.5  
Incorrect 1  
Avg. time 22.0  
No answer 2  
Avg. time 39.0  
Sample size 27   

 Two groups of dots Three groups of dots  

BP #167  
Performance: Human Phaeaco 
Correct 6  
Avg. time 32.3  
Std. dev. 11.4  
Incorrect 4  
Avg. time 77.5  
No answer 16  
Avg. time 40.1  
Sample size 26   

 Groups of two groups  Groups of three groups
 of dots of dots 
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BP #168  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Bulky interior, if closed Narrow interior, if 
  closed 

 

BP #169  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Odd Even  

BP #170  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Π-like Χ-like  
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BP #171  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Angle bisectors meet at Perpendicular bisectors
 the incenter meet at the orthocenter 

 

BP #172  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Radially symmetric   

BP #173  
Performance: Human Phaeaco 
Correct 26  
Avg. time 23.7 

Incorrect 0  
Avg. time   
No answer 1 

16.0 
Sample size 27   

 Small variance of slopes Large variance of 
  slopes 

 

 
Std. dev. 17.7  

 
Avg. time  
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BP #174  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Convex central interior Concave central  
  interior 

 

BP #175  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Small object can glide    
 in the bay 

 

BP #176  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Short line connecting dots Long line connecting 
 avoiding obstacles dots avoiding obstacles 
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BP #177  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   

 
Sample size   

 All interiors are convex    

BP #178  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Center of circle in triangle    
 perpendicular to the other two 

 

BP #179  
Performance: Human Phaeaco 

 
Avg. time   
Std. dev.   

 
Avg. time   

 
Avg. time   
Sample size    

 Thinner at top Thicker at top  

Avg. time  
 

Correct  

Incorrect  

No answer  
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BP #180  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Black region widens Black region narrows
 toward the center toward the center 

 

BP #181  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   

  
Avg. time   
Sample size    

 One concavity Two concavities  

BP #182  
Performance: Human Phaeaco 
Correct   
Avg. time   

  
Incorrect   

  

Avg. time   
Sample size   

 Concave if proximal Convex if proximal 
 points are connected points are connected 

 

No answer 

Std. dev. 

Avg. time 
No answer   
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BP #183  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Same curvature close Change of curvature 
 to the middle close to the middle 

 

BP #184  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

  Zigzag part close to the
  middle 

 

BP #185  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Two complex parts Three complex parts  
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BP #186  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   

  
  

Sample size    

 Object made of objects Object made of objects
  made of objects 

 

BP #187  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Sides of parts one more Sides of parts one less
 than sides of whole than sides of whole 

 

BP #188  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Shape of whole different Shape of whole same 
 from shape of parts as shape of parts 

 

No answer 
Avg. time 
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BP #189  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time  

 
 

Sample size    

 All groups are made of    
 parts of the same texture 

 

BP #190  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   

  
Avg. time   
Sample size   

 All connected pieces Some connected pieces
 have the same texture have different textures 

BP #191  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Orifice on the left Orifice on the right  

 
No answer  
Avg. time  

No answer 
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BP #192  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Elongated vertically Elongated horizontally  

BP #193  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Triangle Rectangle  

BP #194  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Quadrilateral background Triangular background   
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BP #195  

Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Bottom object in front Bottom object behind
 of top objects in 3-D top objects in 3-D 

 

BP #196  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Light-colored texture Dark-colored texture  

BP #197  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Some style (font) Another style (font)  
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BP #198  

Performance: Human Phaeaco 
Correct   
Avg. time 

 
Avg. time 

BP #200  
Performance: Human Phaeaco 
Correct   
Avg. time   
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Solution of BP is based Solution of BP is based
 on featural difference on numerosity 

 

  
Std. dev.   
Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Stays in Escapes  

BP #199  
Performance: Human Phaeaco 
Correct  

  
  

Incorrect   
Avg. time   
No answer   
Avg. time   
Sample size    

 Stays put Tumbles  

Std. dev. 
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Appendix B: Curve Approximation 
1. Parametric cubic b-splines 

Given are n + 1 points, P0, P1, …, Pn, on the 2-D Euclidean plane. The task is to 

find n 3rd-degree (cubic) polynomials S0, S1, …, Sn-1, such that each Si passes 

through points Pi and Pi+1, and the overall curve formed by the cubic polynomials 

is smooth (Figure B.1). This last condition implies that the first and second 

derivatives of polynomials Si-1 and Si at point Pi are equal. 

 P0 

P1 P2

Pn-1

Pn

S0 
S1 Sn-1

Figure B.1: n +1 points approximated by a piecewise smooth curve 

The polynomials Si , i = 0,…,n-1, will be expressed in parametric equations: 

Si (t) = [ai (t), bi (t)],  0 ≤ t ≤ 1,  where 

[ai (0), bi (0)] = Pi, and 

[ai (1), bi (1)] = Pi +1. 

Denote polynomial ai (t) by , and, similarly, 

polynomial b

iiii atatata ,0,1
2

,2
3

,3 +++

ibt ,0+i (t) by b . Thus, the derivatives of  Siii btbt ,1
2

,2
3

,3 ++ i  are: 

]23,23[)( ,1,2
2

,3,1,2
2

,3 iiiiiii btbtbatatatS ++++=′ , and 

]3,3[)( ,2,3,2,3 iiiii btbatatS ++=′′  

(Note: The terms in the second derivative were simplified, divided by 2.) In 

what follows, only the derivation of ai (t) =  is shown, 

since the derivation of b

iiii atatata ,0,1
2

,2
3

,3 +++

i (t) is exactly symmetrical (i.e., replace a by b). 

 421   
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The requirements for piecewise smooth curves translate into the following: 

Si (1) = Si +1 (0) = Pi +1, (1) 

)0()]0(),0([)]1(),1([)1( 111 +++ ′=′′=′′=′ iiiiii SbabaS , (2) and 

)0()]0(),0([)]1(),1([)1( 111 +++ ′′=′′′′=′′′′=′′ iiiiii SbabaS  (3). 

From (1) we have: Si (0) = Pi , hence: a0,i = xi (4) (where xi is the x-coordinate 

of point Pi), and also: Si (1) = Pi+1 , hence: 1,0,1,2,3 +=+++ iiiii xaaaa  (5). 

From (2) we have: 3 1,1,1,2,3 2 +=++ iiii aaaa  (6). 

From (3) we have: 
3

,21,2
,31,2,2,3

ii
iiii

aa
aaaa3

−
=⇒=+ +

+  (7). 

From (7) and (6) we obtain: 1,11,2,2,1 −− ++= iiii aaaa  (8). 

From (7) and (5) we obtain: 

1,0,1,2
,21,2

3 +
+ =+++

−
iiii

ii xaaa
aa

, and using (4) the last equation becomes: 

( )iiiiii xxaaaa −=++− ++ 1,1,2,21,2 333 , from which the following two 

equations are obtained: 

( )1,2,21,1 2
3
1

++ +−−= iiiii aaxxa  (9a), and 

( )iiiii aaxxa ,21,211,1 2
3
1

+−−= −−−  (9b). 

From (8), (9a), and (9b), we obtain: 

( ) ( ) ⇒+−−=+−−++ ++−−− 1,2,21,21,211,2,2 2
3
12

3
1

iiiiiiiiii aaxxaaxxaa  

( ) ⇒−−−=++ −++− 111,2,21,2 3
1

3
4

3
1

iiiiiii xxxxaaa  

111,2,21,2 3634 +−+− +−=++ iiiiii xxxaaa  (10). 
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Equation (10) holds for i = 1, …, n –1, i.e., it yields n –1 equations. To obtain 

two more equations (because there are n +1 unknowns), we can impose the 

following two boundary conditions: 

00)0( 0,20 =⇒=′′ aS  (11), and 

030)1( 1,21,31 =+⇒=′′ −−− nnn aaS , whence using (7) we have: 

000
3

3 ,21,21,2,21,2
1,2,2 =⇒=+−⇒=+

−
−−−

−
nnnnn

nn aaaaa
aa

 (12). 

Thus, equations (10), (11), and (12) result in a system of n +1 equations in 

n +1 unknowns (or rather, (n – 1) × (n – 1), since a2,0 = a2,n = 0, hence the first and 

last rows and the first and last columns of the system are zero): 

0
363

363

363
363

0

4

4

4
4

12

11

321

210

,2

,21,22,2

1,2,21,2

3,22,21,2

2,21,20,2

0,2

nnn

iii

n

nnn

iii

xxx

xxx

xxx
xxx

a
aaa

aaa

aaa
aaa

a

+−

+−

+−
+−

−−

+−

−−

+−

L

L

LLL

LLL  

The above is a tridiagonal system, and can be solved by using Gaussian 

elimination adapted for such systems (e.g., Press, Flannery et al., 1986, p. 40). 

Once the a2,i’s are obtained by solving the above, the a1,i’s are computed from 

equation (9a), whereas the a3,i’s are computed from equation (7). Finally, the a0,i’s 

are already known from (4). The coefficients of the polynomial bi (t) are computed 

in an exactly analogous way, using the y-coordinates of the points Pi. 
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2. Ellipse and circle detection 

Given are n points, P1, …, Pn, n ≥ 6, on the 2-D Euclidean plane. The task is to 

determine whether the points lie approximately on an elliptical arc in general, or 

circular arc in particular, and to estimate the coefficients of the equation of the 

curve. The general equation of a conic section on the plane is given below: 

01222 22 =+++++ fydxcybxyax   (13) 

If a c > 0, then the conic section is an ellipse or circle. (If a c < 0, then it is a 

hyperbola or pair of intersecting straight lines, and if a c = 0 then it is a parabola). 

Clearly, five points suffice to estimate coefficients a, b, c, d, and f in (13), since 

they yield a linear system of five equations in five unknowns, which generally has 

a unique solution. However, any five points (barring collinearities) can satisfy 

(13). Thus, six or more points are required to guarantee that after solving the 

resulting n × 5 linear system, n ≥ 6, (13) describes a conic section. 

After estimating a, b, c, d, and f, the points P1, …, Pn can be plugged back into 

(13), to determine how well they satisfy the equation. Specifically: 

gfydxcybxyax =++++ 222 22   (14) 

In (14), each Pi, i = 1, …, n, yields a value for g that must be approximately 

equal to –1. By collecting a sample of gi, i = 1, …, n, we can determine whether 

the points lie on a conic section by examining the mean value ˜ of the sample, 

which must be near –1, and its standard deviation s, which must be near 0. In 

practice, it suffices that |˜ – (–1)| < 0.05, and s < 0.01. 

Assuming a c > 0, we have an ellipse or circle. The following computations 

result in an estimate of several parameters of the ellipse. 

b
ack

2
−

= ,    
21 k

k
+

=l ,    
2

1 l+
=θsin ,    

2
1cos l−

=θ    (15) 
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In equations (15), θ is the angle by which the ellipse must be turned in order 

to be either horizontally or vertically oriented. The resulting rotated ellipse has the 

following coefficients: 

θθθθ 22 sinsincos2cos cbaa +−=′  (16) 

( ) ( ) θθθθ cossinsincos 22 cabb −+−=′  (17) 

θθθθ 22 coscossin2sin cbac ++=′  (18) 

θθ sincos fdd −=′  

θθ sincos dff −=′  

The value of b´ in (17) bust be approximately equal to zero, since the axes of 

the rotated ellipse are parallel to the x and y axes. Equation (19), below, yields an 

estimate of the eccentricity E of the ellipse: 

if  ca ′>′   then  
a
cE

′
′

−= 1 ,  else  
c
aE

′
′

−= 1    (19) 

Ideally, the value of E in (19) is zero if the points form a circle. But in practice 

the points are computed approximately only (in Phaeaco they are integers), so any 

value of E below around 0.45 suggests a circle. The larger the circle, the more this 

threshold can be “trusted” (i.e., the lower its value can be). Circles that nearly fill 

Phaeaco’s visual box (100 × 100) yield an eccentricity of around 0.20. 

3. Computation of parameters of a circle 

Given are n points, P1, …, Pn, n ≥ 6, on the 2-D Euclidean plane that are 

suspected to lie on a circle. To compute the center of the circle, sample triplets of 

points  taken from among the n points can be examined, and the 

circumcenter  of the triangle formed by each triplet can be computed. If 

the n points lie on a circle, the circumcenters must approximately coincide. 

],,[
321 iii PPP

,(
xi

C )
yi

C
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Therefore, a method for testing how well the given points form a circle is to 

examine the standard deviation of each of the samples of x- and y-coordinates of 

the circumcenters, and demand that it is a small number, close to zero. The 

circumcenter of a triangle P1P2P3 where P1= (x1, y1), P2= (x2, y2), and P3= (x3, y3), 

is given by the formulas: 

( )( ) ( )( )









−
−

−
−
−

−
+−

−
−

+−
+−

=

12

12

13

13

12

1212

13

1313
23

2
yy
xx

yy
xx

yy
xxxx

yy
xxxx

yy
Cx  

( )( )
( )13

131313

13

13

22 yy
xxxxyy

yy
xx

CC xy −
+−

+
+

+
−
−

−=  

The above formulas are valid provided that y1 ≠ y2 and y1 ≠ y3. But note that 

since the three points form a triangle, hence are not collinear, at least one of y1 ≠ 

y2 or y1 ≠ y3 must be true. If any (but not both) of y1 = y2 and y1 = y3 is true, then 

renaming the points appropriately makes the above formulas usable. 

Having computed the center of the circle, the radius is found as the Euclidean 

distance between the center and any of the n points. Taking the average of all n 

distances yields a better estimate of the radius. 

 



    

Appendix C: Origin of Phaeaco’s name 
There are several reasons — all listed below — for which I chose the name 

“Phaeaco” (/fi·'å·ko/) for the system described in this thesis. 

1. It is a proper name 
There is a passage in Homer’s Odyssey that I find extremely interesting from a 

modern, cognitive-science perspective. In Books Eta and Theta, the Phaeacians 

are described: a peace-loving and sea-faring people, who probably lived on an 

island that in our times is called Corfu (just off the northwestern coast of Greece; 

its shape has an irregular elongatedness). The Phaeacians are the first to welcome 

in their land the hero, Odysseus (in Latin: Ulysses), who has suffered a long and 

arduous journey over the seas. The Phaeacian king Alcinous orders his people to 

construct a ship for Odysseus to help him travel to his final destination, the island 

of Ithaca, where his home is. Alcinous, while describing to Odysseus the virtues 

of the Phaeacian ships, says the following (translation by the author, with some 

vital help from Douglas Hofstadter and Kellie Gutman): 

“Your country, tell me what it’s called, your people and your city; 

then let our ships design their course, and bring you safely homeward. 

Phaeacian ships do not have men to steer them on their courses; 

they lack the rudders you may see in ships of other nations; 

but on their own they guess the thoughts and wishes of their makers; 

they know all countries of the world, their cities, and their meadows; 

they travel swiftly like the wind that blows o’er seas and oceans, 

avoiding storms and cloudy skies, so they are not in danger 

of sailing off their course to founder, sink, and slowly vanish.” 

 427   
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Who said Artificial Intelligence is a modern concept? Nearly 3,000 years ago 

it seems Homer had some grasp of it. I found this image very interesting:  a 

program-ship that on its own may guess the thoughts and wishes of its maker, and 

sail through misty cognitive spaces to find, unharmed, its target. 

The above excerpt is from Book Theta, two paragraphs before the end. 

Earlier, in Book Eta, goddess Athena (in Latin: Minerva), in disguise, tells 

Odysseus the following about the Phaeacians: 

“They’re sailors, that is what they are, whose ships, by Neptune’s graces, 

glide o’er the seas like birds, or like perceptions through your spirit.” 

It appears Homer had some cognitive project in his mind! Now, if only he had 

given the Phaeacian ship a name! Well, unfortunately, he did not. So I decided to 

give it a name myself. I thought the name should reflect the ship’s origin, and 

should be of feminine gender (as all ancient names of ships were), rhyming with 

another important ancient ship’s name. 

2. It rhymes (in Greek) with Argo 
Argo was the name of the ship of another (non-Homeric) hero: Jason, who sailed 

the seas to find the golden fleece, helped by his comrades, the Argonauts. Since I 

am one of the “Fargonauts” (from FARG, our research group), I thought that’s 

cute, too. Here are the names of the two ships, in the original language: 

Αργώ – Φαιακώ 

 

3. It is an acronym in English 
Once, my research advisor remarked, “I find most of today’s acronyms very 

contrived.” I kept trying to find an acronym for my project for months, but could 
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not come up with one that would both satisfy my advisor and conform to the spirit 

of our research group’s prior names for projects. So I gave up and decided instead 

that I would devise an acronym that would be obviously too contrived. Eventually 

I succeeded, coming up with the following monstrosity: 

P = Pattern-recognizing (an allusion to the title of M. M. Bongard’s book) 

H = Hofstadter-inspired (a tribute to my advisor) 

A = Architecture (that’s what Phaeaco is) 

E = Empirically (its justification comes from empirical observations) 

A = Approaching (it is just an approximation; I hope it will keep approaching...) 

C = Cognitive 

O = Organization 

Is this sufficiently contrived? But wait... there is more! 

4. It is an acronym in Greek, too! 
Here it is: ΦΑΙΑΚΩ, in ancient (Attic) Greek, makes up the following acronym: 

Φ = Öïõíôáëyò 

Α = Pðïðëå™óáò 

 Ι = EÉèÜêçæåí 

Α = Pëêßíïïí 

Κ = êÜñáí 

Ω = ©ìïßùóåí 

Now, what does all that mean? I leave this as an exercise for the reader. 

Suffice it to say that the words are not random, they are meaningful, make up a 

sentence in ancient Greek, and relate both to this project and to the Odyssey. 
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