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Abstract 

An algorithm for unsupervised competitive learning is 
presented that, at first sight, appears as a straightforward 
implementation of Hebbian learning. The algorithm is then 
generalized in a way that preserves its basic properties but 
facilitates its use in completely different domains, thus 
rendering Hebbian learning a special case of its range of 
applications. The algorithm is not a neural network 
application: it works not at the neural but at the conceptual 
level, although it borrows ideas from neural networks. Its 
performance and effectiveness are briefly examined. 

Introduction 
Traditionally, learning has been considered to be one of the 
foundational pillars of cognition. In 1949, Donald Hebb 
expressed the basic idea of association learning as follows: 
when two neurons are physically close and are repeatedly 
activated together, some chemical changes must occur in 
their structures that signify the fact that the two neurons  
fired together (Hebb, 1949). Neuroscientists and cognitive 
science researchers dubbed this idea “Hebbian learning”, 
and took it to mean that whenever two percepts appear 
together, we (or animals in general) learn an association 
between them. The “how” is usually left to algorithms in 
artificial neural networks (ANN’s). James McClelland 
points out in a recent study that the potential of Hebbian 
learning has been largely underestimated (McClelland, 
2006). McClelland focuses on the neuronal level, but refers 
also to work at the conceptual level (the focus of the present 
article); specifically, in categorization (e.g., Schyns, 1991) 
and in self-organizing topological maps (Kohonen, 1982). 

In what follows, an algorithm that uses Hebbian learning 
at the conceptual level is introduced through an example 
that appears in human cognition. It is then generalized in a 
way that, while retaining its basic properties, makes it 
applicable to problems that involve the detection (and hence 
the learning) of sets of entities that are most closely related 
to each other. 

The Basic Algorithm 
Suppose we are given input consisting of a pair of elements, 
i.e., a drawing depicting some familiar objects, and a phrase 
with identifiable words, the meaning of which is unknown 
(Figure 1). The phrase is supposed to be “about” the objects, 
their properties, and/or relations. The problem is to find the 

correct associations between words and percepts; or, stated 
otherwise, to learn the meaning of the words (in some 
rudimentary sense of the word “meaning”1). 

nae triogon aems es nae cycol 

Figure 1: A drawing, and its associated phrase 

The drawing in Figure 1 shows two familiar geometric 
objects, and the phrase is given underneath the objects in 
italics. The learner is not expected to know any words for 
these objects or their properties in some other language; 
indeed, the phrase might originate from what will turn out to 
be the learner’s native language.2 The learner will receive a 
number of such examples, pairing visual and linguistic data, 
and the algorithm described below will discover the correct 
associations between words and visual percepts. This 
problem has been examined also by Deb Roy (Roy, 2002), 
but Roy’s learning succeeds by batch processing, whereas 
the learning described in the present article is incremental. 

Suppose the learner is capable of perceiving some objects, 
features, and/or relations — collectively called percepts — 
by looking at the visual input, which activate corresponding 
concepts in long-term memory (LTM). Also, the learner can 
identify (i.e., separate from each other) the words in the 
given phrase.3 In reality, an infant learning a language will 
not identify  all the words in a phrase, but it does not harm 
the generality of our algorithm to assume so. 

As a first — perhaps naïve — step in our effort to 
discover which word corresponds to which percept, let us 
adopt the following simplistic strategy: associate every 
concept with every word. Figure 2 depicts this idea. LTM 
concepts that were activated by percepts in the input are 
listed on the top row, and the words of the given phrase are 
added to LTM and shown on the bottom row. Notice that 

                                                 
1 Contrary to our simplifying assumption, in reality words and 
percepts are not associated according to a 1–1 correspondence. 
2 However, infants do not become native speakers by hearing 
phrases that refer to geometric objects. What is described here is an 
abstraction of a real-world situation. 
3  Thus, suppose the “word-segmentation problem” is solved. 
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each word is shown only once (for instance, “nae”, which is 
repeated in the input, is not repeated in Figure 2). 

 

Figure 2: First uninformed step in the algorithm 

The top row of nodes in Figure 2 shows only some of the 
LTM concepts that could be activated by the input; 
specifically, “circle”, “triangle”, “in”, “three-ness”, “right 
angle”, and “one-ness”. A look by a different agent (or by 
the same agent at a different time) might activate different 
concepts, such as “round”, “surrounds”, “slanted line”, etc. 
Those shown in Figure 2 are the ones that happened to be 
activated most strongly in the given learning session. 

Next, the learning session continues with a second pair of 
visual and linguistic input. 

doy triagon, ot nae ainei scelisoes 

Figure 3: A second pair of visual and linguistic input 

The image in Figure 3 activates again some concepts in 
LTM, some of which were activated also by the input of 
Figure 1 (e.g., “triangle”). Linguistically, there are some old 
and new words. Also, one word looks very much like an old 
one (“triagon” vs. “triogon”). A suitable word-identification 
algorithm would not only see the similarity, but also analyze 
their morphological difference, which would later allow the 
agent to make an association between this morphological 
change and the visual percept that was responsible for the 
change. But at this stage no handling of morphology is 
required by the algorithm; suffice it to assume that the two 
words,  “triagon” and “triogon”, are treated as “the same”. 

The algorithm now adds the new concepts to the list at the 
top (that is, it forms the union of the sets of the old and new 
concepts) and the new words to the list at the bottom. 

 

Figure 4: Some associations are reinforced 

For lack of horizontal space, only a few of the new words 
and concepts are shown in Figure 4. The important 
development in Figure 4 is that those concept – word pairs 
that are repeated in inputs 1 and 2 (such as  – “triogon” 

and  – “nae”) have their associations reinforced (shown in 
Figure 4 with bold lines), whereas the associations of those 
pairs of input 1 that did not co-occur in input 2 have faded 
slightly (shown in Figure 4 with dotted lines). At the same 
time, as before, the added words and concepts form all 
possible associations (lines of normal thickness). 

The expectation is now clear: given more instances of 
paired visual and linguistic input (not too many — at most a 
few dozen) the “correct” associations (i.e., those intended by 
the input provider) should prevail, while those that are 
“noise” (unintended) should be eliminated, having faded 
beyond some detection threshold. 

 

Figure 5: Desired (final) set of associations 

Figure 5 shows an approximation of the desired result of 
this procedure. (There will be many more concepts and 
words introduced on the two rows of nodes, and most, but 
not all associations will be “correct”: there will be spurious 
associations that did not fade to the point of elimination.) 

Activations of Associations 
For the above-outlined algorithm to converge to the desired 
associations, a precise mechanism of association fading and 
reinforcement must be established. If the associations fade 
too fast, for example, they will all be eliminated before 
additional evidence arrives making them strong enough to 
survive to the end of the process; if they fade too slow, all 
associations (including “noise”) will eventually survive; 
finally, if a minute degree of fading is allowed even after the 
system receives no further input (waiting, doing nothing), 
then given enough time all associations will drop back to 
zero and the system will become amnesic. To counter these 
problems, the “strength” of each association, which we call 
activation, is expected to have the following properties. 

 

Figure 6: How activation changes over time 

The activation of an association is the quantity α(x) on the 
y-axis of Figure 6. Suppose that, at any point in time, there 
is a quantity x on the x-axis ranging between 0 and 1, but 
that can take on values only along one of the discrete points 
shown on the x-axis. (The total number of these points is an 
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important parameter, to be discussed soon.) Thus, x makes 
only discrete steps along the x-axis. Then the quantity α (x) 
is given by the sigmoid-like function α, also ranging 
between 0 and 1. Below, we explain how and when x moves 
along the x-axis, and why α must be sigmoid-like. 

Activations fade automatically, as time goes by. This 
means that if a sufficient amount of time elapses, x makes 
one discrete step backwards in its range. Consequently, α (x) 
is decreased, since α is monotonic. “Time” is usually 
simulated in computational implementations, but in a real-
time learning system it is assumed to be the familiar 
temporal dimension (of physics). 

Activations are reinforced by the learning system by 
letting x make a discrete step forward in its range. Again, 
the monotonicity of α implies that α (x) is increased. 
However, when x exceeds a threshold that is just before the 
maximum value 1, the number of discrete steps along the x-
axis is increased somewhat (the resolution of segmenting 
the x-axis grows). This implies that the subsequent fading of 
the activation will become slower, because x will have more 
backward steps to traverse along the x-axis. The meaning of 
this change is that associations that are well established 
should become progressively harder to fade, after repeated 
confirmations of their correctness. The amount by which the 
number of steps is increased is a parameter of the system. 

Finally, an explanation must be given for why α must be 
sigmoid-like. First, observe that α must be increasing strictly 
monotonically, otherwise the motion of x along the x-axis 
would not move α (x) in the proper direction. Now, of all the 
monotonically increasing curves that connect the lower-left 
and upper-right corners of the square in Figure 6, the 
sigmoid is the most appropriate shape for the following 
reasons: the curve must be initially increasing slowly, so that 
an initial number of reinforcements starting from x = 0 does 
not result in an abrupt increase in α (x). This is necessary 
because if a wrong association is made, we do not want a 
small number of initial reinforcements to result in a 
significant α (x) — we do not wish “noise” to be taken 
seriously. Conversely, if x has approached 1, and thus α (x) 
is also close to 1, we do not want α (x) to suddenly drop to 
lower values; α must be conservative, meaning that once a 
significant α (x) has been established it should not be too 
easy to “forget” it. This explains the slow increase in the 
final part of the curve in Figure 6. Having established that 
the initial and final parts must be increasing slowly, there 
are only few possibilities for the middle part of a monotonic 
curve, hence the sigmoid shape of curve α. 

Implementation 
The above-described principles were implemented as part of 
Phaeaco, a visual pattern-recognition system (Foundalis, 
2006), in which the visual input consisted of a 200 × 200 
rectangle of black-and-white dots. A “training set” consisted 
of 50 pairs of the form [image, phrase], where the images 
were similar to those shown earlier in Figure 1 and Figure 3 
(they contained geometric figures), and phrases (in English) 
were likewise relevant to the content of their paired images. 
Phaeaco is capable of perceiving the geometric structure of 
such figures, building an internal representation of the 
structure in its “working memory” according to its 

architectural principles, and letting the parts of this 
representation activate the corresponding concepts in its 
long-term memory (LTM). Thus, if a square is drawn in the 
input, the following concepts might be activated in 
Phaeaco’s LTM: square, four, four lines, parallel lines, 
equal lengths, interior, four vertices, right angle, equal 
angles, etc. (listed in no particular order). Some of these 
concepts will be more strongly activated than others, due to 
the principles in Phaeaco’s architecture (e.g., square is more 
“important” than vertex, because a vertex is only a part of 
the representation of a square). Normally, Phaeaco starts 
with some “primitives”, or a priori known concepts (such as 
point, line, angle, interior, etc.), and is capable of learning 
other concepts (such as square) based on the primitives.4 
However, for the purposes of the described experiment we 
suppressed Phaeaco’s mechanism of learning new concepts, 
so as to avoid interference with the learning of associations 
between words and concepts. Thus, we worked with an 
LTM that already included composite concepts such as 
square, triangle, etc. — i.e., anything that might appear in 
the visual input of a training set. 

An additional simplifying assumption was that the 
rudimentary morphology of English was ignored. Thus, 
words such as “triangle” and “triangles” were treated as 
identical; so were all forms of the verb “to be”, etc. 

The entire training set can be found in Martínez (2006). 

Performance 
The following graph (Figure 7) presents the progress of the 
learning of correct associations over time. 

Figure 7: Progress of learning over time 

The graph in Figure 7 shows that the average number of 
correctly learned associations (y-axis) is a generally 
increasing function with respect to the number of input pairs 
presented (x-axis). Since the input pairs were presented at 
regular intervals in our implementation, the x-axis can also 
be seen as representing time. The y-values are averages of a 
large number (100) of random presentation orderings of the 
training set. The gradient of the slope of the curve (the 
“speed of learning”) depends on a variety of factors, 
including the settings of the activation parameters and the 
content of the visual and linguistic input. Under most 
reasonable settings, however, the learning curve appears to 
slowly increase with respect to time, and this was the main 
objective of our implementation. In addition, notice that our 
algorithm requires only one presentation of the training set, 
as opposed to multiple epochs typically required in ANN’s. 
                                                 
4 This learning ability is completely unrelated to the algorithm of 
learning associations, discussed in the present text. 
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A Seemingly Different Application 
The above-described process can be generalized in an 
obvious — and rather trivial — way, to any case in which 
data from two different sets can be paired, and associations 
between their members can be discerned and learned. For 
example, consider discovering the cause for an allergy. One 
set is “the set of all possible pathogens that could cause me 
this allergy”, and the second set has a single member, the 
event (or fact) “I have this allergy”. What is needed is an 
association of the form “pathogen X causes this allergy to 
me”. We might observe the candidate causes during a long 
period of time, and subconsciously only, without actively 
trying to discover the cause. Over time, some candidates are 
reinforced due to repetition, whereas others fade. Given the 
right conditions (sufficient number of repetitions and not too 
long an interval of observation time forcing all associations 
to fade back to zero), we might reach an “Aha!” moment, in 
which one of the associations becomes strong enough to be 
noticed consciously.5 Similarly, some examples of scientific 
discovery (“what could be the cause of phenomenon X?”) 
can be implemented algorithmically by means of the same 
process. However, the generalization discussed in what 
follows goes beyond the pairing of elements of two sets. 

Suppose that the input is in the visual modality only, and 
consists of the shapes shown in Figure 8 (a). 

  

Figure 8 (a): Sample visual input; (b): a few pixels seen 

Suppose also that a visual processing system examines 
the black pixels of this input, not in some systematic, top-to-
bottom, left-to-right fashion, but randomly. Indeed, this is 
the way in which Phaeaco examines its input (Foundalis, 
2006). After some fast initial processing, Phaeaco has seen a 
few pixels that belong to the central (“median”) region of 
the parallelogram and/or the circle, as shown in Figure 8 (b). 

  

Figure 9 (a) – (b): More pixels seen 

                                                 
5 It might be incorrect to make this association, thus concluding the 
wrong cause, but it is the process that concerns us here. 

Shortly afterwards, a few more pixels become known, as 
shown in Figure 9 (a), where the outlines of the figures are 
barely discernible (to the human eye). Within similarly short 
time, enough pixels have been seen — as in Figure 9 (b) — 
for the outlines to become quite clear, at least to the human 
eye. What is needed is an algorithm that, when employed by 
the visual processing system, will make it as capable and 
fast in discerning shapes from a few pixels as the human 
visual system. To achieve this, Phaeaco employs the 
following algorithm. 

As soon as the first pixels become known (Figure 8 (b)), 
Phaeaco starts forming hypotheses about the line segments 
on which the so-far known pixels might lie (Figure 10). 

 

Figure 10: First attempts to “connect the dots” with lines 

Most of these hypotheses will turn out to be wrong (“false 
positives”). But it does not matter. Any of these initial 
hypotheses that are mere “noise” will not be reinforced, so 
their activations will fade over time; whereas the correct 
hypotheses for line segments will endure. Thus, Phaeaco 
entertains line-segment detectors, which are line segments 
equipped with an activation value. The method of least 
squares is used to fit points to line segments, and the 
activation value of each detector depends both on how many 
points (pixels) participate in it, and how well the points fit. 
Note that only one of the detectors in Figure 10 is a “real” 
one, i.e., one that will become stronger and survive until the 
end (the nearly horizontal one at the top); but Phaeaco does 
not know this yet. 

Subsequently more points arrive, as in Figure 9 (a). Some 
of the early detectors of Figure 10 will receive one or two 
more spurious points, but their activations will fade more 
than they will be reinforced. Also, a few more spurious 
detectors might form. But, simultaneously, the “real” ones 
will start emerging (Figure 11). 

 

Figure 11: More points keep the detectors evolving 

Note that several of the early detectors in Figure 10 have 
disappeared in Figure 11, because they were not fed with 
more data points and “died”. Thus, the fittest detectors 
survive at the expense of other detectors that do not explain 
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the data sufficiently well. The last (but not final) stage in 
this series is shown in Figure 12, below. 

 

Figure 12: Most of the surviving detectors are “real” 

In Figure 12, the desired detectors that form the sides of 
the parallelogram are among the survivors. Also, the tiny 
detectors that will be used later to identify the circle have 
started appearing. In the end, all “true” detectors will be 
reinforced with more points and deemed the line segments 
of the image, whereas all false detectors will fade and die. 

The particular reasons why Phaeaco employs this  rather 
unconventional (randomized) processing of its visual input 
are explained in Foundalis (2006). For the purposes of the 
present article it is important to point out that the above 
procedure is extendible to any case where the detection of 
the most salient among a group of entities (objects, features, 
etc.) is required. The reason why this process is similar to 
the Hebbian association-building will be discussed soon. 

Generalizing to Categorization 
The process described in the previous section is a specific 
application of the more general and fundamental process of 
categorization. An example will suffice to make this clear. 

Suppose we are visitors at a new location on Earth where 
we observe the inhabitants’ faces. Initially all faces appear 
unfamiliar, and, having seen only a few of them, we can do 
no better than place them all in one large category, 
“inhabitant of this new place”, as abstracted in Figure 13. 

  

Figure 13: Categorization in abstract space of facial types 

Note that the face-space on the left side of Figure 13 
includes only two facial dimensions, x and y, since each dot 
represents a face. In reality the space is multidimensional, 
and we become capable of perceiving more dimensions as 
our experience is enriched with examples. An initial stage at 
categorization is shown on the right side of Figure 13. The 
dashed outlined regions are detectors of categories, almost 
identical in nature with the detectors of lines of the previous 
section. As before, new examples are assigned to the group 
in which they best fit, statistically. Over time, as more 
examples become available, the categories that are “noise” 

fade, and we end up with a clearer view of the correct 
categories in this space, as shown in Figure 14. (The space 
dimensionality has been kept constant, equal to 2,  for 
purposes of illustration.) 

  

Figure 14: More points help to better discern the categories 

The algorithm is described in detail in Foundalis (2006, 
pp. 228–235). In Phaeaco, categories formed in this way 
(see Figure 15) are defined by the barycenter (“centroid”) of 
the set, its standard deviation, and a few more statistics. 
They also include a few of the initially encountered data 
points. Thus, they are an amalgam of the prototype (Rosch, 
1975; Rosch and Mervis, 1975) and exemplar (Medin and 
Schaffer, 1978; Nosofsky, 1992) theories of category 
representation, following the principles of the FARG family 
of cognitive architectures (Hofstadter, 1995). 

  

Figure 15: The categories finally become clear 

The connection with the earlier discussion of line segment 
detection should now be clear: the same mechanism can be 
employed in both cases for the gradual emergence and 
discerning of the categories, or concepts, in the given space. 
The two cases, perceptual detection of lines and conceptual 
detection of categories, are very nearly isomorphic in 
nature. In general, the discerning of concepts (of any kind, 
whether concrete objects or abstract categories), might be 
thought to rely on a process similar to the one described 
here. For concrete objects, this process has been completely 
automated and has been hardwired by evolution, so that 
very few parameters of it need be learned; for other, more 
abstract and gradually discerned categories, it might look 
more like the mechanism outlined above. 

Discussion 
Two seemingly different case-studies were discussed in the 
previous sections: a Hebbian-like “association-building by 
co-occurrences” process, and one of gradual discerning of 
categories in a multidimensional space. What is the deeper 
commonality between the two? 

Both are about discerning entities.  In the case of Hebbian 
learning the entities are the associations, whereas in the 
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other examples mentioned the entities are categories that 
appear as clusters of objects. The discerning is gradual, and 
initially there is a lot of “noise” in the form of wrongly 
detected entities. But over time the “noise” fades away and 
the correct entities emerge highly activated. 

This is an unsupervised learning algorithm, the success of 
which depends on the appropriate settings of the parameters 
of the activations of entities. Activations (illustrated in 
Figure 6) must have the following properties: 

• The initial increase in activation must be conservative, 
to avoid an early commitment to “noise”. 

• The activation strength must be fading automatically 
as time goes by, to avoid having all activations of 
associations or categories eventually reach the value 1. 

• Those associations or categories that appear to stand 
consistently above others in strength must curb the 
fading speed of their activations, to avoid forgetting 
even the most important ones among them over time. 

It might be thought that our choice of setting the starting 
value of an activation to 0 results in a strictly deterministic 
process. However, this criticism is superficial. Although our 
model is indeed deterministic, in a real-world situation the 
order in which the input is encountered is practically never 
predetermined. Indeterminism arises from the real world. 
Thus, what is required is that any (random) order allows our 
algorithm to run, and indeed, in our measurements we 
varied the input presentation order randomly, observing no 
dependence of the algorithm on any particular input order. 

Although ideas similar to the above have traditionally 
been viewed as belonging to the neural level that inspired 
ANN’s, our work supports the idea that it is possible that the 
same principles have been utilized by human cognition at a 
higher conceptual level. This is not without precedent in 
material evolution and has been noted also in other scientific 
disciplines (e.g., physics, chemistry, biology). For example: 

• The structure of a nucleus with surrounding material is 
found in atoms at the quantum level, and in planetary  
systems and galaxies at the macroscopic level. It is 
also found in biology in eukaryotic cells, and in 
animal societies organized around a leading group, 
with “distances” of individuals from the leader, or 
leaders, varying according to their social status. 

• The notion of “force”: in the quantum world, forces 
are interactions of fermions through the exchange of 
bosons (e.g., Ford, 2004). Chemically, forces are 
responsible for molecular structure. In biology, a force 
is exerted usually by a muscular structure. By analogy, 
a “force” can be of psychological or social nature. 

• The notion of “wave”: in the microworld there are 
waves of matter, or waves of probability; in the 
macroworld there are waves of sound, fluids, gravity, 
etc. More abstractly, there are “waves” of fashion, 
cultural ideas, economic crises, etc. 

In a similar manner, we suggest that, through evolutionary 
mechanisms, cognition abstracted from what was initially 
employed as a simple association-building mechanism in 
creatures that appeared early on in evolutionary history to a 
conceptual categorization method, which finds its most 
versatile expression and application in human cognition. 
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